Technology used:

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. Show that the function $T: R^{2} \rightarrow R^{3}$ is a linear transformation.

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+5 x_{2} \\
0 \\
2 x_{1}-3 x_{2}
\end{array}\right]
$$

2. Do one of the following.
(a) Without using technology, compute the determinant of the matrix

$$
\left[\begin{array}{rrrr}
0 & -1 & 0 & 1 \\
-2 & 3 & 1 & 4 \\
1 & -2 & 2 & 3 \\
0 & 1 & 0 & -2
\end{array}\right] .
$$

(b) The characteristic polynomial of $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ is $\lambda^{2}(\lambda-1)^{2}$. Find the eigenvalues and determine a basis for each eigenspace.
3. Do one of the following.
(a) Suppose \vec{v} is an eigenvector of the matrix A with associated eigenvalue 3 . Explain why \vec{v} is also an eigenvector for the matrix $A^{2}+4 I_{n}$. What is the associated eigenvalue?
(b) Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 5 and -9 and let E_{5} and E_{-9} be the corresponding eigenspaces, respectively. Write all possible characteristic polynomials of A, in factored form, that are consistent with $\operatorname{dim}\left(E_{5}\right)=1$.
4. Do one of the following.
(a) Is the matrix $A=\left[\begin{array}{cc}1 & 0 \\ 10 & 2\end{array}\right]$ diagonalizable? If not, explain why not. If so, find an invertible matrix S for which $S^{-1} A S$ is diagonal.
(b) The matrices $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$ are similar. Exhibit a matrix S for which $B=S^{-1} A S$.
5. Do two of the following.
(a) Show that the set, $W=\left\{A \in R^{3 \times 3}:\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right.$ is an eigenvector of $\left.A\right\}$ is a subspace of $R^{3 \times 3}$.
(b) Find a basis for the subspace $W=\left\{A \in R^{2 \times 2}\right.$: trace $\left.(A)=0\right\}$. Be sure to show that your basis both spans W and is linearly independent.
(c) Suppose $T: R^{2} \rightarrow R^{3}$ is a linear transformation such that $T\left[\begin{array}{c}3 \\ -5\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ and $T\left[\begin{array}{c}-1 \\ 2\end{array}\right]=$ $\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]$. Determine $T\left[\begin{array}{c}7 \\ -11\end{array}\right]$.

