Technology used:

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. Do one of the following
(a) We are told that a certain 5×5 matrix A can be written as

$$
A=B C
$$

where B is 5×4 and C is 4×5. Explain how you know that A is not invertible.
(b) The definition of the orthogonal complement of a subspace V of \mathbf{R}^{n} is the set, V^{\perp}, of all vectors in \mathbf{R}^{n} that are perpendicular to every vector in V. Suppose that $\vec{v}_{1}, \ldots, \vec{v}_{m}$ is a basis for V. Show that $\vec{x} \in R^{n}$ is in V^{\perp} if and only if \vec{x} is orthogonal to each of the m basis vectors of V. That is, show the vector \vec{x} satisfies

$$
\vec{x} \cdot \vec{v}=\overrightarrow{0} \text { for every } \vec{v} \in R^{n} \quad \text { if and only if } \vec{v}_{1} \cdot \vec{x}=\vec{v}_{2} \cdot \vec{x}=\cdots=\vec{v}_{m} \cdot \vec{x}=0
$$

(c) For two invertible $(n \times n)$ matrices A and B, determine which of the following formulas are necessarily true.
i. $(A+B)^{2}=A^{2}+2 A B+B^{2}$.
ii. $(A-B)(A+B)=A^{2}-B^{2}$.
iii. $A B B^{-1} A^{-1}=I_{n}$.
iv. $A B A^{-1}=B$
v. $\left(A B A^{-1}\right)^{3}=A B^{3} A^{-1}$.
2. Do one of the following.
(a) Is the set $W=\left\{\vec{y}=\left[\begin{array}{c}2 x_{1}-3 x_{2}+x_{3} \\ -x_{1}+3 x_{2}-4 x_{3} \\ 5 x_{1}-2 x_{2}\end{array}\right]: x_{1}, x_{2}, x_{3} \in R\right\}$ a subspace of R^{3} ? Explain.
(b) Let V be a subspace of R^{n} and let A be an $(m \times n)$ matrix. Is the set $W=\{\vec{x} \in V: A \vec{x}=\vec{\theta}\}$ a subspace of R^{n} ? Explain. [Note: W is not the null-space of A.]
3. Given the matrix $A=\left[\begin{array}{lllll}1 & 1 & 3 & 1 & 6 \\ 1 & 2 & 6 & 3 & 4 \\ 1 & 3 & 9 & 5 & 2 \\ 1 & 4 & 12 & 7 & 0\end{array}\right]$, show $\operatorname{that} \operatorname{rank}(A)+\operatorname{nullity}(A)=5$ by computing both $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.
4. Let A be an $(m \times m)$ non-singular matrix, and let B be an $(m \times n)$ matrix.
(a) Prove that $N(A B)=N(B)$ (where $N(C)$ denotes the null-space of C)
(b) Use part a. to prove that $\operatorname{rank}(A B)=\operatorname{rank}(B)$.
5. Use the Gram-Schmidt process to generate an orthogonal set from the given linearly independent vectors.

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right] .
$$

