Spring 2000

March 10, 2000

Exam 2

Name

Technology used:

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

The Problems

- 1. Do **one** of the following
 - (a) We are told that a certain 5×5 matrix A can be written as

A = BC

where $B ext{ is } 5 \times 4$ and $C ext{ is } 4 \times 5$. Explain how you know that $A ext{ is not invertible}$.

(b) The definition of the orthogonal complement of a subspace V of \mathbf{R}^n is the set, V^{\perp} , of all vectors in \mathbf{R}^n that are perpendicular to every vector in V. Suppose that $\overrightarrow{v}_1, \ldots, \overrightarrow{v}_m$ is a basis for V. Show that $\overrightarrow{x} \in \mathbb{R}^n$ is in V^{\perp} if and only if \overrightarrow{x} is orthogonal to each of the m basis vectors of V. That is, show the vector \overrightarrow{x} satisfies

 $\overrightarrow{x} \cdot \overrightarrow{v} = \overrightarrow{0}$ for every $\overrightarrow{v} \in \mathbb{R}^n$ if and only if $\overrightarrow{v}_1 \cdot \overrightarrow{x} = \overrightarrow{v}_2 \cdot \overrightarrow{x} = \cdots = \overrightarrow{v}_m \cdot \overrightarrow{x} = 0.$

- (c) For two invertible $(n \times n)$ matrices A and B, determine which of the following formulas are **necessarily** true.
 - i. $(A+B)^2 = A^2 + 2AB + B^2$. ii. $(A-B)(A+B) = A^2 - B^2$. iii. $ABB^{-1}A^{-1} = I_n$. iv. $ABA^{-1} = B$ v. $(ABA^{-1})^3 = AB^3A^{-1}$.
- 2. Do **one** of the following.

(a) Is the set
$$W = \left\{ \vec{y} = \begin{bmatrix} 2x_1 - 3x_2 + x_3 \\ -x_1 + 3x_2 - 4x_3 \\ 5x_1 - 2x_2 \end{bmatrix} : x_1, x_2, x_3 \in R \right\}$$
 a subspace of R^3 ? Explain.

(b) Let V be a subspace of \mathbb{R}^n and let A be an $(m \times n)$ matrix. Is the set $W = \left\{ \overrightarrow{x} \in V : A \overrightarrow{x} = \overrightarrow{\theta} \right\}$ a subspace of \mathbb{R}^n ? Explain. [Note: W is **not** the null-space of A.]

- 3. Given the matrix $A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 1 & 2 & 6 & 3 & 4 \\ 1 & 3 & 9 & 5 & 2 \\ 1 & 4 & 12 & 7 & 0 \end{bmatrix}$, show that $\operatorname{rank}(A) + \operatorname{nullity}(A) = 5$ by computing both $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.
- 4. Let A be an $(m \times m)$ non-singular matrix, and let B be an $(m \times n)$ matrix.
 - (a) Prove that N(AB) = N(B) (where N(C) denotes the null-space of C)
 - (b) Use part a. to prove that rank(AB) = rank(B).
- 5. Use the Gram-Schmidt process to generate an orthogonal set from the given linearly independent vectors.

$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}.$$