Mathematics 232

Technology used:

October 5, 1998

Textbook/Notes used: _____

Fall 1998

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. **Only write on one side of each page.**

The Problems

- 1. Assuming you already know that the reflection, in \mathbb{R}^3 , through the plane y = z is a linear transformation. Determine the matrix A of this transformation.
- 2. Determine if the matrix A below is invertible and, if it is, find its inverse by hand (no technology).

 \begin{bmatrix}
 1 & 1 & 2 \\
 2 & -1 & 1 \\
 2 & 3 & 4
 \end{bmatrix}
- 3. Assuming you already know that the reflection, in \mathbb{R}^4 (thought of as x, y, z, w-space), through the hyperplane y = z is a linear transformation. Determine the matrix A of this transformation.
- 4. Give an example of a matrix A such that $\operatorname{image}(A)$ is spanned by the vector $\begin{vmatrix} 2\\7 \end{vmatrix}$.
- 5. If L is the line in the plane that contains the vector $\begin{bmatrix} 3/5\\4/5 \end{bmatrix}$, find the matrix of the linear transformation that projects a vector \vec{x} onto the line L.
- 6. If A is an invertible $n \times n$ matrix and B is an $n \times n$ matrix, Is it always the case that

$$\left(ABA^{-1}\right)^4 = AB^4A^{-1}?$$

- 7. Let $\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3$ be three vectors in \mathbb{R}^n . Show that $\operatorname{span}(\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3)$ is a subspace of \mathbb{R}^n .
- 8. Find the matrix A of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$T\begin{bmatrix}3\\1\end{bmatrix} = \begin{bmatrix}4\\2\end{bmatrix}$$
 and $T\begin{bmatrix}1\\3\end{bmatrix} = \begin{bmatrix}-2\\3\end{bmatrix}$.

9. Suppose a line L in R^3 contains the unit vector $\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$. Find the matrix of the linear transformation $T(\overrightarrow{x}) = \operatorname{proj}_L \overrightarrow{x}$ by giving the entries of the matrix A in terms of the components of \overrightarrow{u} . What is the sum of the diagonal entries in A?

Name

10. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a function and c a scalar. Define a new function $(cT): \mathbb{R}^n \to \mathbb{R}^m$ by

$$(cT)(\overrightarrow{x}) = cT(\overrightarrow{x})$$
 for all \overrightarrow{x} in \mathbb{R}^n .

Prove that if T is a linear transformation, then so is (cT).

- 11. Prove that a function $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if for all scalars c, d and for all vectors $\overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$ we have $T(c\overrightarrow{v} + d\overrightarrow{w}) = cT(\overrightarrow{v}) + dT(\overrightarrow{w})$.
- 12. Show that it is impossible for a matrix A to have two different inverses. [Hint: Pretend that B, C are distinct inverses and consider the product BAC.]
- 13. We showed in class that it is impossible to have matrices $A_{3\times 2}$ and $B_{2\times 3}$ where the product AB equaled I_3 . On the other hand, it **is** possible to have such matrices where $BA = I_2$. Give an example of specific matrices A, B satisfying this last equality.
- 14. Suppose $A_{n \times m}$ and $B_{m \times n}$ are matrices such that $BA = I_m$. Let \overrightarrow{b} be a particular vector in R^m . Show that the system of equations $B\overrightarrow{x} = \overrightarrow{b}$ must be consistent.
- 15. Is it possible to have an invertible 2×2 matrix A with the property that $A^2 = O_2$? Why or why not? (Here O_2 denotes the 2×2 zero matrix.)
- 16. Let $\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n$ be some vectors in \mathbb{R}^n such that the matrix

$$S = \left[\begin{array}{ccc} | & | & | \\ \overrightarrow{v}_1 & \overrightarrow{v}_2 & \cdots & \overrightarrow{v}_n \\ | & | & | & | \end{array} \right].$$

is invertible. Let $\overrightarrow{w}_1, \overrightarrow{w}_2, \dots, \overrightarrow{w}_n$ be any vectors in \mathbb{R}^m . Use the fact (which you need not prove) that there is a unique linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $T(\overrightarrow{v}_i) = \overrightarrow{w}_i$, for all $i = 1, 2, \dots, n$. Find the matrix A of this transformation in terms of S and

$$B = \left[\begin{array}{cccc} | & | & | \\ \overrightarrow{w}_1 & \overrightarrow{w}_2 & \cdots & \overrightarrow{w}_n \\ | & | & | \end{array} \right].$$

- 17. Prove, with the setup as in the problem above, that the linear transformation T really is **unique**.
- 18. Consider two matrices A and B whose product AB is defined. Describe the *i*th row of the product AB in terms of the rows of A and the matrix B.