October 5, 1998

Technology used:

\qquad
Textbook/Notes used: \qquad
Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Only write on one side of each page.

The Problems

1. Assuming you already know that the reflection, in R^{3}, through the plane $y=z$ is a linear transformation. Determine the matrix A of this transformation.
2. Determine if the matrix A below is invertible and, if it is, find its inverse by hand (no technology).

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & -1 & 1 \\
2 & 3 & 4
\end{array}\right]
$$

3. Assuming you already know that the reflection, in R^{4} (thought of as x, y, z, w-space), through the hyperplane $y=z$ is a linear transformation. Determine the matrix A of this transformation.
4. Give an example of a matrix A such that $\quad \operatorname{image}(A)$ is spanned by the vector $\left[\begin{array}{l}2 \\ 7\end{array}\right]$.
5. If L is the line in the plane that contains the vector $\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right]$, find the matrix of the linear transformation that projects a vector \vec{x} onto the line L.
6. If A is an invertible $n \times n$ matrix and B is an $n \times n$ matrix, Is it always the case that

$$
\left(A B A^{-1}\right)^{4}=A B^{4} A^{-1} ?
$$

7. Let $\vec{v}_{1}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ be three vectors in R^{n}. Show that $\operatorname{span}\left(\vec{v}_{1}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right)$ is a subspace of R^{n}.
8. Find the matrix A of the linear transformation $T: R^{2} \rightarrow R^{2}$ with

$$
T\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right] \text { and } T\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

9. Suppose a line L in R^{3} contains the unit vector $\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$. Find the matrix of the linear transformation $T(\vec{x})=\operatorname{proj}_{L} \vec{x}$ by giving the entries of the matrix A in terms of the components of \vec{u}. What is the sum of the diagonal entries in A ?
10. Let $T: R^{n} \rightarrow R^{m}$ be a function and c a scalar. Define a new function $(c T): R^{n} \rightarrow R^{m}$ by

$$
(c T)(\vec{x})=c T(\vec{x}) \text { for all } \vec{x} \text { in } R^{n} .
$$

Prove that if T is a linear transformation, then so is $(c T)$.
11. Prove that a function $T: R^{n} \rightarrow R^{m}$ is a linear transformation if and only if for all scalars c, d and for all vectors $\vec{v}, \vec{w} \in R^{n}$ we have $T(c \vec{v}+d \vec{w})=c T(\vec{v})+d T(\vec{w})$.
12. Show that it is impossible for a matrix A to have two different inverses. [Hint: Pretend that B, C are distinct inverses and consider the product $B A C$.]
13. We showed in class that it is impossible to have matrices $A_{3 \times 2}$ and $B_{2 \times 3}$ where the product $A B$ equaled I_{3}. On the other hand, it is possible to have such matrices where $B A=I_{2}$. Give an example of specific matrices A, B satisfying this last equality.
14. Suppose $A_{n \times m}$ and $B_{m \times n}$ are matrices such that $B A=I_{m}$. Let \vec{b} be a particular vector in R^{m}. Show that the system of equations $B \vec{x}=\vec{b}$ must be consistent.
15. Is it possible to have an invertible 2×2 matrix A with the property that $A^{2}=O_{2}$? Why or why not? (Here O_{2} denotes the 2×2 zero matrix.)
16. Let $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}$ be some vectors in R^{n} such that the matrix

$$
S=\left[\begin{array}{ccccc}
& \mid & & & \\
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n} \\
& \mid & \mid & &
\end{array}\right] .
$$

is invertible. Let $\vec{w}_{1}, \vec{w}_{2}, \cdots, \vec{w}_{n}$ be any vectors in R^{m}. Use the fact (which you need not prove) that there is a unique linear transformation $T: R^{n} \rightarrow R^{m}$ such that $T\left(\vec{v}_{i}\right)=\vec{w}_{i}$, for all $i=1,2, \cdots, n$. Find the matrix A of this transformation in terms of S and

$$
B=\left[\begin{array}{ccccc}
& \mid & & \mid \\
\vec{w}_{1} & \vec{w}_{2} & \cdots & \vec{w}_{n} \\
& \mid & \mid & &
\end{array}\right] .
$$

17. Prove, with the setup as in the problem above, that the linear transformation T really is unique.
18. Consider two matrices A and B whose product $A B$ is defined. Describe the i th row of the product $A B$ in terms of the rows of A and the matrix B.
