February 2, 2006

Technology used:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any six (6) of the following problems.

1. Solve the following system of linear equations by hand. Write the solution set using column vector notation.

$$
\begin{aligned}
x_{1}+2 x_{2}+5 x_{3}+2 x_{4} & =4 \\
-x_{2}-2 x_{3}+x_{4} & =-2 \\
3 x_{1}-6 x_{2}-9 x_{3}+18 x_{4} & =-12 \\
x_{2}+2 x_{3}-x_{4} & =2
\end{aligned}
$$

2. Find a polynomial $f(x)$ of degree 3 such that $f(1)=1, f(2)=5, f^{\prime}(1)=2$, and $f^{\prime}(2)=9$.
3. If

$$
[A \mid \mathbf{b}] \xrightarrow{R_{i} \longleftrightarrow R_{j}}[B \mid \mathbf{c}] \xrightarrow{\beta R_{i}}[C \mid \mathbf{d}] \xrightarrow{\alpha R_{i}+R_{j}}[D \mid \mathbf{e}]
$$

are a sequence of row operations that convert the augmented matrix $[A \mid \mathbf{b}]$ to $[D \mid \mathbf{e}]$. Write down a sequence of row operations that will convert $[D \mid \mathbf{e}]$ to $[A \mid \mathbf{b}]$.
4. Given linear system $L S(A, \mathbf{b})$ with solution set S, and linear system $L S(B, \mathbf{c})$ with solution set T, that is the result of the following row operation on the augmented matrices: $[A \mid \mathbf{b}] \xrightarrow{\alpha R_{i}+R_{j}}[B \mid \mathbf{c}]$. Show $S \subseteq T$.
5. Prove Theorem NSRRI: Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.
6. Below are a matrix A and the matrix B in reduced row-echelon form that is row equivalent to A.
(a) Is A a singular matrix?
(b) What are r, D, and F for matrix B ?
(c) Is the linear system of equations $L S(A, \mathbf{0})$ consistent? If so, how many solutions are there?
(d) If \mathbf{b} is not the zero vector, $\mathbf{0}$, is the linear system of equations $L S(A, \mathbf{b})$ consistent? If so, how many solutions are there?
(e) What is the null space $N(A)$ of A ? (Write your answer in column vector form.)

$$
A=\left[\begin{array}{ccccccc}
1 & 2 & 1 & 3 & 1 & 0 & 5 \\
2 & 4 & 1 & 4 & 1 & 0 & 7 \\
-3 & -6 & -1 & -5 & 1 & -2 & -3 \\
1 & 2 & 1 & 3 & 3 & -2 & 11
\end{array}\right], B=\left[\begin{array}{ccccccc}
1 & 2 & 0 & 1 & 0 & 0 & 2 \\
0 & 0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

7. Suppose that α is any constant and that $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ are solutions of the homogeneous system of linear equations $L S(A, \mathbf{0})$. Prove that $\mathbf{t}=\left[\begin{array}{c}\alpha u_{1} \\ \vdots \\ \alpha u_{n}\end{array}\right]$ is also a solution of $L S(A, \mathbf{0})$. [Be sure to explicitly show that \mathbf{v} solves the system of equations.]
