September 24

Technology used:

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

You may use technology for any problem other than the first.

1. Solve the following system of equations by hand.

$$
\begin{gathered}
x_{1}-x_{2}-2 x_{3}-x_{4}=-3 \\
3 x_{1}-3 x_{2}-2 x_{3}+5 x_{4}=7 \\
2 x_{1}-2 x_{2}-3 x_{3} \quad=-2
\end{gathered}
$$

2. Do one of the following
(a) Find the inverse of the matrix below or show that the inverse does not exist.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 8 \\
1 & 2 & 2
\end{array}\right]
$$

(b) Determine if the following collection of vectors in \mathbf{R}^{4} are linearly independent or dependent.

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{c}
9 \\
10 \\
11 \\
12
\end{array}\right]
$$

3. Do one of the following
(a) Find all vectors in \mathbf{R}^{4} whose dot product with each of the following vectors is 0 . That is, find all \vec{x} such that $\vec{x} \cdot \overrightarrow{v_{i}}=0$ for $i=1,2,3$.

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}
1 \\
9 \\
9 \\
7
\end{array}\right]
$$

(b) Find a polynomial of degree 3 whose graph goes through the points $(2,-1),(3,-59),(-1,5)$, and ($-2,-29$).
4. Do one of the following
(a) Suppose we know that a (2×2) invertible matrix A has all entries integers and that all the entries in A^{-1} are also integers. Show that the only possible values for the determinant of A are 1 and -1 .
(b) Is is possible to have an invertible (3×3) matrix A with $A A=O$? (Here O represents the (3×3) zero matrix.)
5. Do one of the following
(a) Give an example of a (2×3) matrix A and a (3×2) matrix B for which $A B=I_{2}$.
(b) Suppose A is a (3×3) matrix. Show it is always possible to find a non-zero (3×3) matrix B with $A B=O$ where O represents the (3×3) zero matrix. [Hint: consider the solutions of the system of equations $B \vec{x}=\vec{\theta}$.

