Technology used:

\qquad
Textbook/Notes used: \qquad
Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Only write on one side of each page.

The Problems

1. Find all maxima, minima and saddle points of

$$
f(x, y)=9 x^{3}+\frac{y^{3}}{3}-4 x y
$$

2. Find the absolute maximum and minimum of the function

$$
f(x, y)=x^{2}-x y+y^{2}+1
$$

on the closed triangular plate in the first quadrant bounded by the lines $x=0, y=4, y=x$.
3. Find the points on the ellipse $x^{2}+2 y^{2}=1$ where $f(x, y)=x y$ has its extreme values.
4. Sketch the region of integration and then evaluate

$$
\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} d x d y
$$

5. Find the volume of the region that lies under the paraboloid $z=x^{2}+y^{2}$ and above the triangle enclosed by the lines $y=x, x=0$, and $x+y=2$ in the $x y$-plane.
6. Find the volume of the solid in the first octant bounded by the coordinate planes, the plane $x=3$ and the parabolix cylinder $z=4-y^{2}$.
7. Find the moment of inertia about the y-axis of a thin plate (lamina) bounded by the line $y=1$ and the parabola $y=x^{2}$ if the density is $\rho(x, y)=y+1$.
8. Use double integrals to find the volume of a sphere of radius R.
9. A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 1$. The plate, including the boundary, is heated so the temperature at the point (x, y) is

$$
T(x, y)=x^{2}+2 y^{2}-x .
$$

Find the temperatures at the hottest and coldest points on the plate.
10. Rewrite (but do not evaluate) the triple integral

$$
\int_{0}^{1} \int_{-1}^{0} \int_{0}^{y^{2}} d z d y d x
$$

in the order
(a) $d y d z d x$
(b) $d x d z d y$
11. Find the average value of $F(x, y, z)=x^{2}+y^{2}+z^{2}$ over the cube in the first octant bounded by the coordinate planes and the planes $x=1, y=1$, and $z=1$.
12. Use Lagrange multipliers to find the point on the surface $z=x y+1$ that is nearest the origin.
13. If x thousand dollars is spent on labor and y thousand dollars is spent on equipment, the output of a certain factory may be modeled by

$$
Q(x, y)=60 x^{1 / 3} y^{2 / 3}
$$

units. Assume $\$ 120,000$ is available.
How should money be allocated between labor and equipment to generate the largest possible output?
14. In the above problem, use the Lagrange multiplier λ and differentials to estimate the change in the maximum output of the factory that would result if the money available for labor and equipment is increased by $\$ 1,000$.
15. Over what region in the $x y$-plane does

$$
\iint_{R}\left(4-x^{2}-2 y^{2}\right) d A
$$

have its maximum value?
16. Find the area enclosed by one leaf of the rose $r=12 \cos (3 \theta)$.
17. Find the volume of the region in the first octant bounded by the coordinate planes and the planes $x+z=1$, and $y+2 z=2$.

