Technology used:

\qquad
Textbook/Notes used: \qquad
Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Only write on one side of each page.

The Problems

1. Write equations, in parametric form, of the line of intersection of the planes $x-2 y+4 z=2$ and $x+y-2 z=5$.
2. Find an equation for the plane consisting of all the points equidistant from the points $(1,1,1)$ and $(1,2,3)$..
3. Find an equation of the plane that passes through the line of intersection of the planes $x-z=$ 1 and $y+2 z=3$ and is perpendicular to the plane $x+y-2 z=1$.
4. Find parametric equations for the line in the plane $z=3$ that makes a 30° angle with \mathbf{i} and a 60° angle with \mathbf{j}.
5. Find the point(s) of intersection of the paraboloid $y^{2}+z^{2}=2 x$ and the curve traced out by the position function $\vec{r}(t)=<e^{t}, e^{t} \cos (t), e^{t} \sin (t)>, 0 \leq t \leq \infty$.
6. Find the length of the space curve

$$
\vec{r}(t)=<6 t^{3},-2 t^{3},-3 t^{3}>, \quad \text { from } t=-1 \text { to } t=1 .
$$

7. Find the unit tangent, normal and binormal vectors \mathbf{T}, \mathbf{N} and \mathbf{B} for the space curve $\vec{r}(t)=$ $\left(t^{3} / 3\right) \mathbf{i}+\left(t^{2} / 2\right) \mathbf{j}, t>0$.
8. Find the curvature κ for $\vec{r}(t)=<\cos ^{3}(t), \sin ^{3}(t), 0>, 0<t<\pi / 2$.
9. Sketch the region bounded by the surfaces $z=\sqrt{x^{2}+y^{2}}$, and $x^{2}+y^{2}=1$ for $1 \leq z \leq 2$.
10. Prove that if $\vec{u}(t)$ is a differentiable function with outputs in R^{3} and $f(t)$ is a differentiable scalar function, then

$$
\frac{d}{d t}[\vec{u}(f(t))]=f^{\prime}(t) \vec{u}^{\prime}(f(t)) .
$$

11. Find the length of the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1 .
$$

[Hint: parametrize the ellipse using vectors of the form $<a \cos (t), b \sin (t)>$.]
12. The distance between two lines in R^{3} that do not intersect is defined to be the length of a line segment $P Q$ where P is on one line, Q is on the other line and segment $P Q$ is perpendicular to both lines. Find the distance between the skew lines given by

$$
\begin{aligned}
& x=1+t, y=1+6 t, z=2 t \text { and } \\
& x=1+2 s, y=5+15 s, z=-2+6 s .
\end{aligned}
$$

13. Show that if a particle's speed is constant (i.e., $|\vec{v}(t)|=c$) then its acceleration is either zero or normal to its path.
