September 17

Technology used:

\qquad
Textbook/Notes used: \qquad
Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Only write on one side of each page.

The Problems

1. The vectors $\vec{a}, \vec{b}, \vec{c}$ in the figure all lie in a plane. By arranging the vectors head to tail sketch (a) $\vec{a}-\vec{b}$, (b) $\vec{a}-\vec{b}+\vec{c}$, and (c) $\vec{a}-2 \vec{b}$.
2. a
(a) Find a unit vector that is tangent to the curve $y=x^{2}$ at the point $P(2,4)$.
(b) Find a unit vector that is normal (orthogonal) to the curve $y=x^{2}$ at the point $P(2,4)$.
3. Find a unit vector that is tangent to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at the point $(1,0)$.
4. Find a unit vector that is tangent to the curve $y=\int_{0}^{x} \sqrt{3+t^{4}} d t$ at the point $(0,0)$.
5. Write $\vec{a}=5 \mathbf{i}+12 \mathbf{j}$ as a product of a scalar and a unit vector in the same direction as \vec{a}.
6. Describe the set of points in space whose coordinates satisfy the given inequality and equation.

$$
x^{2}+y^{2} \leq 1, \quad z=3
$$

7. The points A, B, C are the corners of a triangle.
(a) Find the vector represented by the directed line segment from C to the midpoint M of side $A B$.
(b) Find the vector represented by the segment from C to the point that lies two-thirds of the way from C to M on the median $C M$.
8. Let $A B C D$ be a quadrilateral in space. Show that the two segments joining the midpoints of opposite sides of $A B C D$ bisect each other. (Hint: Show the segments have the same midpoint.)
9. Given $\vec{a}=<\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}>$, and $\vec{b}=<0, \frac{1}{\sqrt{2}},-1>$ find
(a) The scalar component (scalar projection) of \vec{b} in the direction of \vec{a}.
(b) The vector projection of \vec{b} in the direction of \vec{a}.
10. Write $\vec{b}=<8,4,-12>$ as the sum of a vector parallel to $\vec{a}=<1,2,-1>$ and a vector orthogonal to \vec{a}.
11. This problem shows that cancellation does not hold for the dot product. Find an example of vectors $\vec{a}, \overrightarrow{b_{1}}, \overrightarrow{b_{2}}$ where $\vec{a} \neq \overrightarrow{0}, \vec{a} \cdot \overrightarrow{b_{1}}=\vec{a} \cdot \overrightarrow{b_{2}}$, but $\overrightarrow{b_{1}} \neq \overrightarrow{b_{2}}$.
12. Find, and label, two of the interior angles of the triangle $A B C$ whose vertices are $A(-1,0,2), B(2,1$, and $C(1,-2,2)$.
13. Find the angle between the diagonal of a cube and the diagonal of one of its faces.
14. Find the angle between the diagonal of a cube and one of the edges it meets at a vertex.
15. Find the angle between the tangent lines to the two curves $y=x^{3}$, and $y=\sqrt{x}$ at the point $Q(1,1)$.
16. Find a unit vector in the direction of $\vec{a} \times \vec{b}$ if $\vec{a}=<-8,-2,-4>$, and $\vec{b}=<2,2,1>$.
(a) Find a vector \vec{n} perpendicular to the plane of the points $P(1,-1,2), Q(2,0,-1)$, and $R(0,2,1)$.
(b) Find the area of triangle $P Q R$.
17. Given vectors \vec{a}, \vec{b}, and \vec{c}, use the dot product and cross product, as appropriate, to write the formulas for the following (read carefully):
(a) The vector projection of \vec{a} onto \vec{b}.
(b) A vector orthogonal to \vec{a} and \vec{b}.
(c) A vector with the length of \vec{a} and the direction of \vec{b}.
(d) A vector orthogonal to $\vec{a} \times \vec{b}$ and \vec{c}.
18. This problem shows that cancellation does not hold for the cross product. Find an example of vectors $\vec{a}, \overrightarrow{b_{1}}, \overrightarrow{b_{2}}$ where $\vec{a} \neq \overrightarrow{0}, \vec{a} \times \overrightarrow{b_{1}}=\vec{a} \times \overrightarrow{b_{2}}$, but $\overrightarrow{b_{1}} \neq \overrightarrow{b_{2}}$.
19. Find parametric and symmetric equations for the line through the point $P(3,-4,-1)$ and parallel to the vector $\mathbf{i}+\mathbf{j}+\mathbf{k}$.
20. Find a parametric form for the line through the point $P(2,3,0)$ and perpendicular to the vectors $\vec{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\vec{b}=3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$.
(a) Give an example, in parametric form, of two lines in space that are skew.
(b) Give an example, in symmetric form, of two lines in space that are parallel.
21. Find the distance from the point $P(2,1,3)$ to the line $x=2+2 t, y=1+6 t, z=-3-5 t$.
22. Does the line $x=1-t, y=3 t, z=1+t$ have any points in common with the sphere $2 x^{2}+2 y^{2}+2 z^{2}+x+y+z=9$? If so, find all such points.
