Mathematics 221

Fall 1998

Exam 1

Name

September 17

Technology used: _____

Textbook/Notes used: _____

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Only write on one side of each page.

The Problems

1. The vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} in the figure all lie in a plane. By arranging the vectors head to tail sketch (a) $\overrightarrow{a} - \overrightarrow{b}$, (b) $\overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c}$, and (c) $\overrightarrow{a} - 2\overrightarrow{b}$.

2. a

- (a) Find a unit vector that is tangent to the curve $y = x^2$ at the point P(2, 4).
- (b) Find a unit vector that is normal (orthogonal) to the curve $y = x^2$ at the point P(2, 4).
- 3. Find a unit vector that is tangent to the curve $3x^2 + 8xy + 2y^2 3 = 0$ at the point (1,0).
- 4. Find a unit vector that is tangent to the curve $y = \int_0^x \sqrt{3 + t^4} dt$ at the point (0, 0).
- 5. Write $\overrightarrow{a} = 5\mathbf{i} + 12\mathbf{j}$ as a product of a scalar and a unit vector in the same direction as \overrightarrow{a} .
- 6. Describe the set of points in space whose coordinates satisfy the given inequality and equation.

$$x^2 + y^2 \le 1, \ z = 3.$$

- 7. The points A, B, C are the corners of a triangle.
 - (a) Find the vector represented by the directed line segment from C to the midpoint M of side AB.
 - (b) Find the vector represented by the segment from C to the point that lies two-thirds of the way from C to M on the median CM.

- 8. Let ABCD be a quadrilateral in space. Show that the two segments joining the midpoints of opposite sides of ABCD bisect each other. (Hint: Show the segments have the same midpoint.)
- 9. Given $\overrightarrow{a} = <\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}} >$, and $\overrightarrow{b} = <0, \frac{1}{\sqrt{2}}, -1 >$ find
 - (a) The scalar component (scalar projection) of \overrightarrow{b} in the direction of \overrightarrow{a} .
 - (b) The vector projection of \overrightarrow{b} in the direction of \overrightarrow{a} .
- 10. Write $\overrightarrow{b} = < 8, 4, -12 > \text{as the sum of a vector parallel to } \overrightarrow{a} = < 1, 2, -1 > \text{ and a vector orthogonal to } \overrightarrow{a}$.
- 11. This problem shows that cancellation does not hold for the dot product. Find an example of vectors $\overrightarrow{a}, \overrightarrow{b_1}, \overrightarrow{b_2}$ where $\overrightarrow{a} \neq \overrightarrow{0}, \ \overrightarrow{a} \cdot \overrightarrow{b_1} = \overrightarrow{a} \cdot \overrightarrow{b_2}$, but $\overrightarrow{b_1} \neq \overrightarrow{b_2}$.
- 12. Find, and label, two of the interior angles of the triangle ABC whose vertices are A(-1, 0, 2), B(2, 1, -and C(1, -2, 2)).
- 13. Find the angle between the diagonal of a cube and the diagonal of one of its faces.
- 14. Find the angle between the diagonal of a cube and one of the edges it meets at a vertex.
- 15. Find the angle between the tangent lines to the two curves $y = x^3$, and $y = \sqrt{x}$ at the point Q(1, 1).
- 16. Find a unit vector in the direction of $\overrightarrow{a} \times \overrightarrow{b}$ if $\overrightarrow{a} = <-8, -2, -4>$, and $\overrightarrow{b} = <2, 2, 1>$.
 - (a) Find a vector \overrightarrow{n} perpendicular to the plane of the points P(1, -1, 2), Q(2, 0, -1), and R(0, 2, 1).
 - (b) Find the area of triangle PQR.
- 17. Given vectors \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} , use the dot product and cross product, as appropriate, to write the formulas for the following (read carefully):
 - (a) The vector projection of \overrightarrow{a} onto \overrightarrow{b} .
 - (b) A vector orthogonal to \overrightarrow{a} and \overrightarrow{b} .
 - (c) A vector with the length of \overrightarrow{a} and the direction of \overrightarrow{b} .
 - (d) A vector orthogonal to $\overrightarrow{a} \times \overrightarrow{b}$ and \overrightarrow{c} .
- 18. This problem shows that cancellation does not hold for the cross product. Find an example of vectors \overrightarrow{a} , $\overrightarrow{b_1}$, $\overrightarrow{b_2}$ where $\overrightarrow{a} \neq \overrightarrow{0}$, $\overrightarrow{a} \times \overrightarrow{b_1} = \overrightarrow{a} \times \overrightarrow{b_2}$, but $\overrightarrow{b_1} \neq \overrightarrow{b_2}$.

- 19. Find parametric and symmetric equations for the line through the point P(3, -4, -1) and parallel to the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$.
- 20. Find a parametric form for the line through the point P(2,3,0) and perpendicular to the vectors $\overrightarrow{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{b} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$.
 - (a) Give an example, in parametric form, of two lines in space that are **skew**.
 - (b) Give an example, in symmetric form, of two lines in space that are **parallel**.
- 21. Find the distance from the point P(2,1,3) to the line x = 2 + 2t, y = 1 + 6t, z = -3 5t.
- 22. Does the line x = 1 t, y = 3t, z = 1 + t have any points in common with the sphere $2x^2 + 2y^2 + 2z^2 + x + y + z = 9$? If so, find all such points.