Technology used:

Directions: Be sure to include in-line citations every time you use technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

I. (20 points each) Do any two (2) of the following.

1. The average value of a function $f(x, y)$ over a region D is defined to be

$$
f_{\text {ave }}=\frac{1}{A(D)} \iint_{D} f(x, y) d A
$$

where $A(D)$ is the area of region D. Compute the average value of $f(x, y)=x \sin (x y)$ over the rectangle $R=[0, \pi / 2] \times[0,1]$.
2. Integrate the function $f(x, y)=x / y$ over the region in the first quadrant bounded by the lines $y=x, y=2 x, x=1, x=2$.
3. Find the value of the improper integral $I=\int_{0}^{\infty} e^{-x^{2}} d x$ by using polar coordinates to compute

$$
I^{2}=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-y^{2}} d y\right)=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d y d x
$$

II. (15 points) Set up an iterated double integral that describes the surface area of the frustum of the cone $z=4 \sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=4$. Do not evaluate the integral.

1. (over)
III. (15 points) Do any two (2) of the following
2. Guaranteed Problem from Worksheet: Use iterated integrals in polar, cylindrical or spherical coordinates to express the the volume inside the sphere $x^{2}+y^{2}+z^{2}=25$ and outside the cylinder $(x-1)^{2}+y^{2}=1$.(Do not evaluate.)
3. Set up, (but do not evaluate) the triple integral in spherical coordinates which represents the volume of the solid above the plane $z=1$ and interior to both the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
4. The following iterated triple integral is being integrated over a solid domain D.

$$
\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} 1 d z d y d x
$$

(a) Explain why the projection of D into the $x z$ - plane is the region bounded by the x - axis and the parabola $z-1=-x^{2}$.
(b) Rewrite (but do not evaluate) the integral as an equivalent iterated integral in the order $d y d z d x$.
IV. (15 points) Do one (1) of the following.

1. The change of variables

$$
\langle x, y\rangle=T(u, v)=\langle 3 u+2 v, u+v\rangle
$$

transforms the square $S=\{(u, v): 0 \leq u \leq 1,0 \leq v \leq 1\}$ in the $u v$-plane into a corresponding region D in the $x y$-plane.
(a) Sketch the region D in the $x y$-plane.
(b) Compute the Jacobian of the transformation.
2. Let D be the region in bounded by the lines $x-y=0, x-y=1, x+y=1$, and $x+y=2$. Evaluate

$$
\iint_{D} \frac{x+y}{\cos (x-y)} d A .
$$

[Hint: Make an appropriate change of variables.]

