
Mathematics 221 Fall 2003

Exam 3

November 4, 2003

Name

Technology used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time
you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in
solving a problem. Only write on one side of each page.

The Problems

I. (15 points) Write out the Chain Rule formula for ∂z
∂w for the case where z = f (x, y), x = x (s, t),

y = y (s, t), s = s (u, v, w), t = t (u, v, w).

II. (15 points) Do one (1) of the following.

1. For both of the following, find the limit, if it exists, or show the limit does not exist. Do not
use ε− δ techniques to find limits that exist.
(a)

lim
(x,y)→(0,0)

x3 + xy2

x2 + y2

(b)

lim
(x,y)→(0,0)

(x + y)2

x2 + y2
.

2. Use Clairaut’s Theorem to show that if the third order partial derivatives of f are continuous
then

fxxy = fyxy = fyyx.

III. (20 points) Do one (1) of the following.

1. Given the surface z = f (x, y) with implicit equation x2−2y2−3z2 +xyz = 4, find the equation
of the tangent plane at the point (3,−2,−1).

2. Four positive numbers, each less than or equal to 50 are rounded to the first decimal place and
then multiplied together. Use differentials to estimate the maximum error in the computed
product that might result from the rounding.

IV. (20 points) Find and classify the local maximum, local minimum, and saddle points of

f (x, y) = x3 − 3xy + y3.

[There is more than one such point.]

OVER

V. (15 points each) Do any two (2) of the following.
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1. Find the point on the plane 2x− y + z = 1 that is closest to the point (−4, 1, 3).

2. Find the absolute maximum and minimum values, if they exist, of

f (x, y) = 2x3 + y4

where the domain is the set D =
{
(x, y) : x2 + y2 ≤ 1

}
.

3. Use Lagrange multipliers to find the maximum value of the function z = f (x, y) = x4 + y4 + z4

subject to the constraint x2 + y2 + z2 = 1. Are you sure there really is a maximum?
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