October 7

Technology used:

Directions: Cite any use of technology. For partial credit, if you are unsure of your answer to a problem be sure to describe what you do know and where you think your error is. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

I (15 points each) Do any two (2) of the following problems.

1. Find the time or times (values of t) in the interval $t \geq 0$ when $\vec{F}(t)=(\sin t) \mathbf{i}+(t-2) \mathbf{j}+(\cos t) \mathbf{k}$, and its derivative are orthogonal.
2. Find the point of intersection of $\vec{F}_{1}(t)=<2 t, 2 t-1,3+4 t^{2}>$ and $\vec{F}_{2}(s)=<6-s, 2 s-$ $7, s^{2}-9>$ and compute the angle between the tangent vectors at this point.
3. A certain helix, when parametrized by arc length has the parametrization

$$
\vec{F}(s)=\left\langle\cos \left(\frac{s}{\sqrt{2}}\right), \sin \left(\frac{s}{\sqrt{2}}\right), \frac{s}{\sqrt{2}}\right\rangle, s \geq 0 .
$$

Find the curvature of this helix at the point where $s=1$.
II (20 points each) Do and two (2) of the following problems.

1. The paraboloid $2 y=(x-1)^{2}+z^{2}$ and the plane $x+z=1$ intersect along a curve in \mathbf{R}^{3}. Find a parametrization $\vec{F}(t)$ for this curve.
2. Find the position function of a particle that starts at $\widehat{\mathbf{j}}$ with an initial velocity of $\widehat{\mathbf{i}}+\widehat{\mathbf{k}}$ and has acceleration $\overrightarrow{\mathbf{A}}(t)=t \widehat{\mathbf{i}}+t^{2} \widehat{\mathbf{j}}+\cos (2 t) \widehat{\mathbf{k}}$.
3. Find the unit tangent, principal unit normal and unit binormal vectors for the circular helix

$$
\overrightarrow{\mathbf{r}}(t)=\cos (t) \widehat{\mathbf{i}}+\sin (t) \widehat{\mathbf{j}}+t \widehat{\mathbf{k}}
$$

III (15 points each) Do any two (2) of the following problems.

1. If $\vec{G}(t) \neq \overrightarrow{0}$, show that

$$
\frac{d}{d t}[\|\vec{G}(t)\|]=\frac{1}{\|\vec{G}(t)\|}\left(\vec{G}(t) \cdot \vec{G}^{\prime}(t)\right) .
$$

[Hint: $\|\vec{G}(t)\|^{2}=\vec{G}(t) \cdot \vec{G}(t)$.]
2. Suppose $\vec{R}_{1}(t)=\langle x(t), y(t), z(t)\rangle, a \leq t \leq b$ and $\vec{R}_{2}(u)=\vec{R}_{1}(g(u)), \alpha \leq u \leq \beta$ are two parametrizations of a curve C where $t=g(u), a=g(\alpha), b=g(\beta)$, and $g^{\prime}(u)>0$ for all values of u. Show the arc length of the curve C is independent of parametrization by showing that $\int_{a}^{b}\left\|\vec{R}_{1}^{\prime}(t)\right\| d t=\int_{\alpha}^{\beta}\left\|\vec{R}_{2}^{\prime}(u)\right\| d u$. [Hint: Use substitution on the first integral just as you did on the "independence of parametrization" problem on the last project.]
3. The DNA molecule has the shape of double helix. The radius of each helix is about 10 angstroms and each helix rises about 34 angstroms during each turn for a total of about 2.9×10^{8} complete turns. Compute the length of each helix.

