September 23

Name

Directions: Cite any use of technology. For partial credit, if you are unsure of your answer to a problem be sure to describe what you do know and where you think your error is. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

The Problems

I (10 points each) Do any three (3) of the following problems.

- 1. Write inequalities that describe the region consisting of all points between, but not on, the spheres of radius r and R centered at the origin, where r < R.
- 2. Find the area of the triangle formed by points P(2, 0, -3), Q(3, 1, 0), R(5, 2, 2).
- 3. If $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$, and $\overrightarrow{\mathbf{c}}$ are vectors in \mathbf{R}^3 , state whether each expression is meaningful. If it is, state whether it is a scalar or a vector.

(a)
$$\overrightarrow{\mathbf{a}} \cdot \left(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\right)$$

(b) $\overrightarrow{\mathbf{a}} \times \left(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}\right)$
(c) $\overrightarrow{\mathbf{a}} \times \left(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\right)$
(d) $\left(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}\right) \times \overrightarrow{\mathbf{c}}$
(e) $\left(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}\right) \times \left(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{c}}\right)$
(f) $\left(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\right) \cdot \left(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{c}}\right)$

4. Identify the following quadric surfaces by name (e.g., sphere, hyperboloid of one sheet, et cetera). **Do Not Sketch.**

(a)
$$y^2 + z^2 = 1 - 4x^2$$

(b) $y^2 + z^2 = x$
(c) $y^2 + z^2 = 1$
(d) $y = z^2 - x^2$
(e) $y^2 + z^2 = 1 + x^2$
(f) $4x^2 - y^2 + z^2 + 8x + 8z = -20$

II (15 points each) Do any two (2) of the following problems.

 $\vec{\mathbf{d}}$

- 1. Suppose \overrightarrow{a} is a three-dimensional unit vector in the first octant that starts at the origin and makes angles of 60° and 72° with the positive x- and y- axes, respectively. What are the components of \overrightarrow{a} ?
- 2. Given non-zero vectors $\overrightarrow{a}, \overrightarrow{b}$ for which $\operatorname{Proj}_{\overrightarrow{a}} \overrightarrow{b}$ is also non-zero, show that the vector $\overrightarrow{b} \operatorname{Proj}_{\overrightarrow{a}} \overrightarrow{b}$ is orthogonal to \overrightarrow{a} . Do not give a geometric argument: use the dot product.
- 3. Suppose L is the line that passes through the point P(0, 2, -1) and is parallel to the line with parametric equations x = 1 + 2t, y = 3t, z = 5 7t. Find the points where L meets the three coordinate planes.

- 4. Write an equation in parametric form for the line of intersection of the planes x + y + z = 1 and x + z = 0.
- III (20 points each) Do any two (2) of the following problems.
 - 1. Write an equation for either of the planes that are parallel to the plane x + 2y 2z = 1 and are two units away from it.
 - 2. If $\overrightarrow{a} \cdot \overrightarrow{c} = \overrightarrow{b} \cdot \overrightarrow{c}$, must it be the case that $\overrightarrow{a} = \overrightarrow{b}$? If so, explain why. If not, provide a counterexample.
 - 3. Find an equation for the plane that contains the parallel lines

$$\frac{x-3}{2} = \frac{y+4}{5} = \frac{3-z}{6}$$
 and $\frac{x+4}{2} = \frac{y-7}{5} = \frac{z+1}{6}$.

4. Find parametric equations for the line through the point (0, 1, 2) that is parallel to the plane x + y + z = 2 and perpendicular to the line x = 1 + t, y = 1 - t, z = 2t.