September 23

Name

Directions: Cite any use of technology. For partial credit, if you are unsure of your answer to a problem be sure to describe what you do know and where you think your error is. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

I (10 points each) Do any three (3) of the following problems.

1. Write inequalities that describe the region consisting of all points between, but not on, the spheres of radius r and R centered at the origin, where $r<R$.
2. Find the area of the triangle formed by points $P(2,0,-3), Q(3,1,0), R(5,2,2)$.
3. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$, and $\overrightarrow{\mathbf{c}}$ are vectors in \mathbf{R}^{3}, state whether each expression is meaningful. If it is, state whether it is a scalar or a vector.
(a) $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
(b) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})$
(c) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
(d) $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}$
(e) $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{d}})$
(f) $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$
4. Identify the following quadric surfaces by name (e.g., sphere, hyperboloid of one sheet, et cetera). Do Not Sketch.
(a) $y^{2}+z^{2}=1-4 x^{2}$
(b) $y^{2}+z^{2}=x$
(c) $y^{2}+z^{2}=1$
(d) $y=z^{2}-x^{2}$
(e) $y^{2}+z^{2}=1+x^{2}$
(f) $4 x^{2}-y^{2}+z^{2}+8 x+8 z=-20$

II (15 points each) Do any two (2) of the following problems.

1. Suppose \vec{a} is a three-dimensional unit vector in the first octant that starts at the origin and makes angles of 60° and 72° with the positive x - and y - axes, respectively. What are the components of \vec{a} ?
2. Given non-zero vectors \vec{a}, \vec{b} for which $\operatorname{Proj}_{\vec{a}} \vec{b}$ is also non-zero, show that the vector $\vec{b}-\operatorname{Proj} \vec{a} \vec{b}$ is orthogonal to \vec{a}. Do not give a geometric argument: use the dot product.
3. Suppose L is the line that passes through the point $P(0,2,-1)$ and is parallel to the line with parametric equations $x=1+2 t, y=3 t, z=5-7 t$. Find the points where L meets the three coordinate planes.
4. Write an equation in parametric form for the line of intersection of the planes $x+y+z=1$ and $x+z=0$.

III (20 points each) Do any two (2) of the following problems.

1. Write an equation for either of the planes that are parallel to the plane $x+2 y-2 z=1$ and are two units away from it.
2. If $\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$, must it be the case that $\vec{a}=\vec{b}$? If so, explain why. If not, provide a counterexample.
3. Find an equation for the plane that contains the parallel lines

$$
\frac{x-3}{2}=\frac{y+4}{5}=\frac{3-z}{6} \text { and } \frac{x+4}{2}=\frac{y-7}{5}=\frac{z+1}{6} .
$$

4. Find parametric equations for the line through the point $(0,1,2)$ that is parallel to the plane $x+y+z=2$ and perpendicular to the line $x=1+t, y=1-t, z=2 t$.
