November 4, 1998

Technology used:

\qquad
Textbook/Notes used: \qquad
Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Only write on one side of each page.

The Problems

1. Sketch (reasonably carefully) two level surfaces of $f(x, y, z)=x^{2}+z^{2}$.
2. The ideal gas law says that $P V=k T$, where P is the pressure of a confined gas, V its volume, T its temperature (in degrees Kelvin), and k is a constant. Express P as a function of V and T and describe the level curves of this function.
3. Show that the following limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{\sqrt{x^{2}+y^{2}}} .
$$

4. If $f(x, y)=x^{5} y^{7}+x \cos \left(y^{2}\right)$ find
(a) $f_{x}(x, y)$
(b) $f_{y}(x, y)$
(c) $\frac{\partial^{2} f}{\partial x \partial y}(x, y)$.
5. An equation that models the concentration, C, of a substance as it diffuses through a region over time is (where x indicates position, t is time and δ is a constant)

$$
\frac{\partial C}{\partial t}=\delta \frac{\partial^{2} C}{\partial x^{2}}
$$

Show that the following function satisfies the above diffusion equation.

$$
C(x, t)=t^{-1 / 2} e^{-x^{2}(4 \delta t)} .
$$

6. Find $\frac{\partial w}{\partial r}$ if

$$
w=\frac{x+y}{2-z}, x=2 r s, y=\sin (r t), z=s t^{2} .
$$

7. Write out the formula for $\frac{\partial u}{\partial r}$ if $u=f(x, y, z, w), x=x(s, t, r), y=y(s, t, r), z=z(s, t, r)$ and $w=w(s, t, r)$.
8. A pail attached to a rope 2 meters long is swung at the rate of 1 revolution per second. Find the tangential and normal components of the acceleration. Assume the rope is swung in a level plane.
9. Let f have continuous partial derivatives and suppose the maximal directional derivative of f at $P_{0}(1,2)$ has magnitude 50 and is attained in the direction from P_{0} toward $Q(3,-4)$. Use this information to find $\nabla f(1,2)$.
10. Find the slope of the tangent line to the level curve at the point $P(1,1,3)$ on the surface $z=x^{2}+x y^{2}+y^{3}$.
11. Suppose the position vector of a moving particle is given by $\vec{r}(t)$. Show the tangential component of the object's acceleration can be computed by the formula

$$
a_{\vec{T}}=\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}
$$

12. Use differentials to show that near $(0,0)$

$$
\frac{1}{1+x-y} \approx 1-x+y
$$

13. According to Poiseuille's Law, the resistance to the flow of blood offered by a cylindrical blood vessel of radius r and length x is

$$
R(r, x)=\frac{c x}{r^{4}}
$$

for a constant $c>0$. A certain blood vessel in the body is 8 cm long and has a radius of 2 mm . Estimate (using differentials) the percentage change in R when x is increased by 3% and r is decreased by 2%.

