Exam 2

March 11, 2004

Name

Directions: Only write on one side of each page.

Useful Information

- 1. Hilbert's parallel axiom: If l is any line and P is any point not incident with l then there is at most one line through P parallel to l.
- 2. **Statement** 4.7: If a line, distinct from two parallel lines, intersects one of the two parallel lines, then it also intersects the other.
- 3. Statement 4.12: If $m \parallel l$ and $l \parallel n$, then $m \parallel n$.

The Problems

- **I.** Do all three of the following.
 - 1. Using any previous results, prove part (d) of Proposition 3.13. If AB < CD and CD < EF, then AB < EF.
 - 2. Using any previous results and the existence of angle bisectors, prove the following portion of Proposition 4.4

The bisector of an angle is unique.

- 3. Using any previous result, prove Proposition 4.7. (Statement 4.7) \iff (Hilbert's parallel axiom)
- **II.** Do any two (2) of the following.
 - 1. Using any results from Chapter 3 prove the following.

Given angle $\measuredangle ABC$ and ray \overrightarrow{BD} opposite to ray \overrightarrow{BC} , if point E is on the same side of line \overrightarrow{BC} as A, then exactly one of the following is true.

- (a) E is interior to angle $\measuredangle ABC$
- (b) E is on ray \overrightarrow{BA}
- (c) E is interior to angle $\measuredangle ABD$.
- 2. Let γ be a circle with center O, and let A and B be two points on γ . The segment AB is called a **chord** of γ . Suppose segment AB is not a diameter of γ and let M be the midpoint of segment AB (so $M \neq O$). Prove that line \overleftrightarrow{OM} is perpendicular to line \overleftrightarrow{AB} .
- 3. Using any result through Proposition 4.11, prove

(Statement S.12) \Longrightarrow (Hilbert's parallel property).

You do **not** need to prove the other half of the equivalence

(Hilbert's parallel property) \iff (Statement S.12).