Spring 2003

Exam 2

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

Problems

- 1. (20 points) Using any previous results, prove part (b) of Proposition 3.21. Given angles $\measuredangle P, \measuredangle Q, \measuredangle R$. If $\measuredangle P < \measuredangle Q$ and $\measuredangle Q \cong \measuredangle R$, then $\measuredangle P < \measuredangle R$.
- 2. (20 points) Using any previous results, prove the following portion of Proposition 4.3.Every segment has a midpoint (do NOT show the midpoint is unique).
- 3. (20 points each) Do any three (3) of the following.
 - (a) In the following interpretation, all incidence axioms and the first two betweenness axioms hold. Explain why betweenness axiom 3 fails. Use the usual Euclidean model except interpret the betweenness relation A * B * C to mean "B is the midpoint of segment AC".
 - (b) In the figure on the blackboard, the pairs of angles $(\measuredangle A'B'B'', \measuredangle ABB'')$ and $(\measuredangle C'B'B'', \measuredangle CBB'')$ are called pairs of **corresponding** angles cut off on l and l' by transversal t. Prove corresponding angles are congruent if and only if alternate interior angles are congruent.
 - (c) Using any result through Chapter 4 prove the following. Let γ be a circle with center O, and let A and B be two points on γ . The segment AB is called a **chord** of γ . Let M be the midpoint of segment AB. Prove that if $O \neq M$, then \overleftrightarrow{OM} is perpendicular to \overleftrightarrow{AB} .
 - (d) Using any result through the corollaries to Theorem 4.3, prove the following. If A * B * C and $\overrightarrow{DC} \perp \overleftrightarrow{AC}$ then AD > BD > CD. (See the figure on the board.)