Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

Do any two (2) of the following.

1. Using any previous results, prove part (d) of Proposition 3.13.

If $A B<C D$ and $C D<E F$, then $A B<E F$.
2. Let γ be a circle with center O, and let A and B be two points on γ. The segment $A B$ is called a chord of γ. Suppose segment $A B$ is not a diameter of γ and let M be the midpoint of segment $A B$ (so $M \neq O$). Prove that line $\overleftrightarrow{O M}$ is perpendicular to line $\overleftrightarrow{A B}$.
3. Using any previous result, prove the portion of Proposition 4.9

$$
\left(\text { Statement } S_{4.9}\right) \Rightarrow \text { (Hilbert's parallel postulate) }
$$

Here statement $S_{4.9}$ is: "If t is a transversal to lines l and $m, l \| m$, and $t \perp l$, then $t \perp m$."

Do any two (2) of the following.

1. Using any result up to and including Proposition 4.5 and exercise 26 prove the following. If $A * B * C$ and line $\overleftrightarrow{D C}$ is perpendicular to line $\overleftrightarrow{A C}$, then $A D>B D>C D$. [Hint: Use Proposition 4.5.]
2. Using any previous result, prove Proposition 4.11

Hilbert's parallel postulate \Rightarrow the angle sum of every triangle is exactly 180°.
3. Definition: Let l and l^{\prime} be two distinct lines and t a transversal meeting l, l^{\prime} at B and B^{\prime}, respectively. Let A, C be on l with $A * B * C$ and A^{\prime}, C^{\prime} on l^{\prime} with A, A^{\prime} on the same side of t and $A^{\prime} * B^{\prime} * C^{\prime}$. Further let $B^{\prime \prime}$ on t be such that $B * B^{\prime} * B^{\prime \prime}$. Then the pairs of angles ($\left.\measuredangle A^{\prime} B^{\prime} B^{\prime \prime}, \measuredangle A B B^{\prime \prime}\right)$ and $\left(\measuredangle C^{\prime} B^{\prime} B^{\prime \prime}, \measuredangle C B B^{\prime \prime}\right)$ are called corresponding angles cut off on l and l^{\prime} by transversal t.

Using any result in Chapter 4 (but not any exercises) prove that corresponding angles are congruent if and only if alternate interior angles are congruent.
4. Using any result in Chapter 4 previous to exercise 31 prove that if line l meets circle γ at two points C and D and $C * P * D$, then P is interior to γ.[That is, show that if O is the center of γ then $O P<O C$.]

