Exam 2

March 29, 2002

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

The Problems

Do any two (2) of the following.

- 1. Using any previous results, prove part (d) of Proposition 3.13. If AB < CD and CD < EF, then AB < EF.
- Let γ be a circle with center O, and let A and B be two points on γ. The segment AB is called a chord of γ. Suppose segment AB is not a diameter of γ and let M be the midpoint of segment AB (so M ≠ O). Prove that line OM is perpendicular to line AB.
- 3. Using any previous result, prove the portion of Proposition 4.9

(Statement $S_{4.9}$) \Rightarrow (Hilbert's parallel postulate)

Here statement $S_{4,9}$ is: "If t is a transversal to lines l and m, $l \parallel m$, and $t \perp l$, then $t \perp m$."

Do any two (2) of the following.

- 1. Using any result up to and including Proposition 4.5 and exercise 26 prove the following. If A * B * C and line \overleftarrow{DC} is perpendicular to line \overleftarrow{AC} , then AD > BD > CD. [Hint: Use Proposition 4.5.]
- 2. Using any previous result, prove Proposition 4.11

Hilbert's parallel postulate \Rightarrow the angle sum of every triangle is exactly 180°.

3. Definition: Let *l* and *l'* be two distinct lines and *t* a transversal meeting *l*, *l'* at *B* and *B'*, respectively. Let *A*, *C* be on *l* with *A* * *B* * *C* and *A'*, *C'* on *l'* with *A*, *A'* on the same side of *t* and *A'* * *B'* * *C'*. Further let *B''* on *t* be such that *B* * *B'* * *B''*. Then the pairs of angles (∠*A'B'B''*, ∠*ABB''*) and (∠*C'B'B''*, ∠*CBB''*) are called **corresponding** angles cut off on *l* and *l'* by transversal *t*.

Using any result in Chapter 4 (but not any exercises) prove that corresponding angles are congruent if and only if alternate interior angles are congruent.

4. Using any result in Chapter 4 previous to exercise 31 prove that if line l meets circle γ at two points C and D and C * P * D, then P is interior to γ .[That is, show that if O is the center of γ then OP < OC.]