Technology used:

Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. $(2,2,3,3$ points $)$
(a) Give an example of a convergent infinite series.
(b) give an example of a divergent improper integral.
(c) Give an example of a monotone, non-decreasing, unbounded sequence
(d) Briefly explain what it means for an infinite series $\sum_{k=1}^{\infty} a(k)$ to converge. Your answer must include a limit to be correct.
2. (20 points each) Without using your calculator, evaluate three (3) of the following integrals.
(a)

$$
\int \frac{\sin (x)}{\sqrt{1+\cos (x)}} d x
$$

(b)

$$
\int \frac{4 x+4}{x\left(x^{2}+1\right)} d x
$$

(c)

$$
\int_{-1}^{\infty} \frac{1}{x^{4 / 3}} d x
$$

(d)

$$
\int \sqrt{\frac{1+x}{1-x}} d x
$$

3. (15 points) Do one (1) of the following.
(a) A solid object has a base that lies in the region in the first quadrant between $y=x^{3}, x=1$ and the x-axis. Cross sections of the solid perpendicular to the y-axis are squares. Use the method of cross-sectional areas to find the volume of the solid.
(b) Find the volume of the solid obtained by rotating the region bounded by $y=2 x-x^{2}$ and the x-axis about the line $x=-1$. Specify whether you are using the method of cylindrical shells or the washer method.
4. (15 points) In chapter 5 we showed that the volume of a solid is completely determined by the areas of its cross sections sliced perpendicular to an axis along its length. We translated this fact into the language of calculus obtaining $V=\int_{a}^{b} A(x) d x$. Outline the complete Riemann sum development of this formula. Start with the fact that the solid lies between a and b on the x-axis.
5. (15 points) Set up the definite integral that models the following. Do not evaluate the integral. A tank in the shape of a (point down) cone is 12 feet high and has a circular base of radius 4 feet. If the cone is filled to a depth of 5 feet with a syrup weighing 100 pounds per cubic foot, what is the work done to pump the syrup out of a spout 3 feet above the top of the cone? [Hint: use similar triangles.]
6. (15 points) Do one (1) of the following.
(a) Use the error bound for the Trapezoid Rule to determine a value of n that guarantees the trapezoidal estimate for the following integral is accurate to within 0.001 . [You will probably need your calculator.]

$$
\int_{0.5}^{2} \sin \left(x^{3}\right) d x
$$

(b) The formula for computing a Taylor Series for a function f at $x=c$ is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

Use this formula to compute the Taylor Series with $c=1$ for the function $f(x)=(3+2 x)^{-1}$. Write your answer in Sigma notation. [Hint: be sure to use the chain rule!. Also, to see the pattern, keep track of all multiples of 2 that occur in your derivatives.]
7. (20 points) Given the power series $f(x)$ below,
(a) Determine the derivative series $f^{\prime}(x)$ and write it in Sigma notation.
(b) Determine all values of x for which the derivative series $f^{\prime}(x)$ converges.

$$
f(x)=\sum_{k=1}^{\infty} \frac{2}{k^{2} 3^{k}}(x-1)^{k}
$$

