Technology used:

Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (5,15 points) Do both of the following.
(a) Write the following improper integral as the sum of integrals having exactly one 'impropriety'. Do not solve.

$$
\int_{-\infty}^{\infty} \frac{e^{x}}{x(x-1)} d x
$$

(b) Evaluate the following integral

$$
\int \frac{9 x+21}{(x-1)\left(x^{2}+4\right)} d x
$$

2. (20 points) Use the $\varepsilon-N$ definition of limit to prove

$$
\lim _{x \rightarrow \infty} \frac{2 x+1}{x+1}=2
$$

3. (10,10 points) Compute any two (2) of the following limits. Include work to justify your answers.
(a)

$$
\lim _{x \rightarrow \infty} x^{2} \sin \left(\frac{1}{x}\right)
$$

(b)

$$
\text { show } \lim _{n \rightarrow \infty} c^{\frac{1}{n}}=1 \text {, where } c \text { is a positive constant }
$$

(c)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{\sqrt{4 x^{2}-3 x}}
$$

4. (10,10 points) For any two (2) of the following improper integrals and infinite series, determine if they are convergent or divergent? If convergent, find their limit.
(a)

$$
\int_{-\infty}^{0} \frac{1}{x^{2}+1} d x
$$

(b)

$$
\sum_{k=2}^{\infty}(k+1)^{-\underline{3}}
$$

(c)

$$
\sum_{k=2}^{\infty}\left(\frac{5}{11}\right)^{k+3}
$$

5. Do one (1) of the following.
(a) (15,5 points) The function $G(m)=\frac{1}{2} \sum_{k=0}^{\infty} k \frac{m-1}{} 2^{-k}$ is a sequential function analogous to the Gamma function of the last quiz. The domain of this function is $m=1,2,3, \cdots$.
i. Use Discrete Integration by Parts to show that

$$
G(m+1)=m G(m)
$$

ii. Given the fact that $G(1)=1$, in a few sentences, explain why $G(m+1)=m$!
(b) (10,10 points) Evaluate both of the following.
i.

$$
\sum_{k=2}^{\infty}\left[\frac{1}{k}-\frac{1}{k+3}\right]
$$

ii.

$$
\int \frac{1}{x(x+1)(x-2)} d x
$$

Useful Information about Sequences

$D_{k}\left[k^{\underline{n}}\right]=n k^{n-1}$	$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
$D_{k}\left[k^{-\underline{n}}\right]=-n(k+1)^{-n-1}$	$\frac{d}{d x}\left[x^{-n}\right]=-n x^{-n-1}$
$D_{k}\left[c^{k}\right]=(c-1) c^{k}$	$\frac{d}{d x}\left[c^{x}\right]=\ln (c) c^{x}$
$D_{k}[A(k)]=a(k) \rightarrow \sum a(k)=A(k)+C$	$\frac{d}{d x}[F(x)]=f(x) \rightarrow \int f(x) d x=F(x)+C$
$\sum k^{\underline{n}}=\frac{1}{n+1} k^{n+1}+C$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$
$\sum k^{-\underline{n}}=\frac{1}{-n+1}(k-1)^{-n+1}+C$, if $n \neq 1$	$\int x^{-n} d x=\frac{1}{-n+1} x^{-n+1}+C$, if $n \neq 1$
$\sum \frac{1}{k^{\text {L }}}=$?	$\int \frac{1}{x} d x=\ln \|x\|+C$
$\sum c^{k}=\frac{1}{c-1} c^{k}+Q, c \neq 1$	$\int c^{x} d x=\frac{1}{\ln (c)} c^{x}+Q, \quad c \neq 1$
$\sum 1^{k}=k+C$	$\int 1 d x=x+C$
$\sum_{k=0}^{n} a(k)=\left.A(k)\right\|_{0} ^{n+1}=A(n+1)-A(0)$	$\int_{a}^{b} f(x) d x=\left.F(x)\right\|_{a} ^{b}=F(b)-F(a)$
$\sum_{k=0}^{n} U_{k} v_{k}=\left.U_{k} V_{k}\right\|_{0} ^{n+1}-\sum_{k=0}^{n} V_{k+1} u_{k}$	$\int_{a}^{b} u d v=\left.u v\right\|^{b}-\int_{a}^{b} v d u$
$\sum_{k=r}^{\infty} a(k)=\lim _{n \rightarrow \infty} \sum_{k=r}^{n} a(k)$	$\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$
$\begin{aligned} 0 \leq a(k) & \leq b(k) \text { and } \sum_{k=r}^{\infty} b(k) \text { conv. } \\ & \Longrightarrow \sum_{k=r}^{\infty} a(k) \text { conv. } \end{aligned}$	$\begin{aligned} 0 \leq f(x) & \leq g(x) \text { and } \int_{a}^{\infty} g(x) d x \text { conv. } \\ & \Longrightarrow \int_{a}^{\infty} f(x) d x \text { conv. } \end{aligned}$
$0 \leq a(k) \leq b(k)$ and $\sum_{k=r}^{\infty} a(k)$ div. $\Longrightarrow \sum_{k=r}^{\infty} b(k)$ div.	$\begin{aligned} & 0 \leq f(x) \leq g(x) \text { and } \int_{a}^{\infty} f(x) d x \text { div. } \\ & \Longrightarrow \int_{a}^{\infty} g(x) d x \text { div. } \end{aligned}$

