Technology used:

Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (4, 4, 7 points)
(a) Evaluate $\int \frac{1}{x+5} d x$
(b) Evaluate $\int(x+1 / 2) e^{x^{2}+x} d x$
(c) What is the average value of the volumes of all possible spheres with radii between 3 and 6 ? [Useful fact: The volume of a sphere of radius r is $4 / 3 \pi r^{3}$.]
2. $(10,5$ points $)$
(a) Find the general solution to the following first-order, nonlinear, separable differential equation with initial condition.

$$
\frac{d y}{d x}=\frac{x^{2}}{y} \frac{\sqrt{y^{2}+5}}{\sqrt{x^{3}+1}}
$$

(b) Find the particular solution corresponding to the initial condition $y(2)=2$.
3. (10 points) Find the area of region bounded by the curve $y=2 x^{2}+1$ and the lines $x=-2, y=4 x+1$.
4. (10,10 points) The mass density of oil, measured in kilograms per square meter, in a circular oil slick on the surface of the ocean at a distance r meters from the center of the slick is given by $\rho(r)=\frac{50}{1+r}$ $\frac{\mathrm{kg}}{\mathrm{m}^{2}}$.
(a) Suppose the slick extends from $r=0$ to $r=10,000 \mathrm{~m}$. Using a partition with n subintervals and either the left or right endpoints, write a Riemann sum approximating the total mass of oil in the slick. [Mass is measured in kilograms (kg).]
(b) Write the definite integral that is equal to the limit as $\|P\| \rightarrow 0$ of your Riemann sum. Do not evaluate this definite integral.
5. Do one of the following.
(a) (20 points) A function f has the following properties. For all $a \leq x \leq b, f(x)<0, f^{\prime}(x)<0$, and $f^{\prime \prime}(x)>0$.
Which of the numerical estimates (left endpoint, right endpoint, midpoint, trapezoid or Simpson's rules) for $\int_{a}^{b} f(x) d x$ will always produce an overestimate? Which will always produce an underestimate? And for which is there not enough information to determine the relationship of the estimate to $\int_{a}^{b} f(x) d x$?
(b) ($5,5,10$ points) Suppose $f(x)$ is a monotone increasing function on the interval $[a, b]$. Briefly explain why each of the following is true.
i. For any integer n, the right endpoint approximation R_{n} is an overestimate of the value of $\int_{a}^{b} f(x) d x$.
ii. For any integer n, the left endpoint approximation L_{n} is an underestimate of the value of $\int_{a}^{b} f(x) d x$.
iii. If we use the average, $\frac{R_{n}+L_{n}}{2}$, of R_{n} and L_{n} as an estimate for $\int_{a}^{b} f(x) d x$, then the error in our approximation can be no worse than $\frac{R_{n}-L_{n}}{2}$. That is,

$$
\left|\int_{a}^{b} f(x) d x-\frac{R_{n}+L_{n}}{2}\right| \leq \frac{R_{n}-L_{n}}{2}
$$

6. (20 points) Do one of the following
(a) Find the derivative $H^{\prime}(x)$ of

$$
H(x)=x^{2} \int_{5}^{\cos (x)} \frac{\ln (t)}{t^{4}+7} d t
$$

(b) Find a function f that satisfies the equation

$$
\tan (x)+e^{x}=\int_{5}^{x} \sqrt{f(t)-2} d t
$$

Hint: take the derivative of both sides.

