Turn In Problems 2.1

2.1 Exercise 22 on page 324 (Section 5.1)

1. Inscribe a regular n-sided polygon inside a circle of radius 1 and compute the area of one of the n congruent triangles formed by drawing radii to the vertices of the polygon.
Each of the n triangles is isosceles with summit angle $\frac{2 \pi}{n}$ and unit side lengths. If we drop a perpendicular from the summit to the base we obtain two congruent right triangles whose adjacent side has length $1 \cos \left(\frac{\pi}{n}\right)$ and opposite side has length $1 \sin \left(\frac{\pi}{n}\right)$. Thus the area of a single isosceles triangle is

$$
\begin{aligned}
(2)\left(\frac{1}{2}\right) \sin \left(\frac{\pi}{n}\right) \cos \left(\frac{\pi}{n}\right) & =\sin \left(\frac{\pi}{n}\right) \cos \left(\frac{\pi}{n}\right) \\
& =\frac{1}{2} \sin \left(\frac{2 \pi}{n}\right)
\end{aligned}
$$

where the last equality comes from the trigonometric identity: $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$.
2. Since there are n of these triangles, the total area contained in the regular n-sided polygon is

$$
\begin{aligned}
A_{p} & =n\left[\frac{1}{2} \sin \left(\frac{2 \pi}{n}\right)\right] \\
& =\frac{1}{2} \frac{\sin \left(\frac{2 \pi}{n}\right)}{\frac{1}{n}}
\end{aligned}
$$

Since this last expression has the form ' $\frac{0}{0}$ ' as n limits to infinity we apply L'Hospitals rule to compute the following limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{2} \frac{\sin \left(\frac{2 \pi}{n}\right)}{\frac{1}{n}} & =\frac{1}{2} \lim _{n \rightarrow \infty} \frac{\sin \left(\frac{2 \pi}{n}\right)}{\frac{1}{n}} \\
& =\frac{1}{2} \lim _{n \rightarrow \infty} \frac{\cos \left(\frac{2 \pi}{n}\right) \cdot\left(\frac{-2 \pi}{n^{2}}\right)}{\left(\frac{-1}{n^{2}}\right)} \\
& =\frac{1}{2} \lim _{n \rightarrow \infty}\left[2 \pi \cos \left(\frac{2 \pi}{n}\right)\right] \\
& =\left(\frac{1}{2}\right)(2 \pi) \lim _{n \rightarrow \infty} \cos \left(\frac{2 \pi}{n}\right) \\
& =\left(\frac{1}{2}\right)(2 \pi) \cos (0) \\
& =\pi
\end{aligned}
$$

3. If we use a circle of radius r instead of radius 1 in the above computations all that will change in part 1. is that we replace $\sin \left(\frac{\pi}{n}\right)$ and $\cos \left(\frac{\pi}{n}\right)$ with $r \sin \left(\frac{\pi}{n}\right)$ and $r \cos \left(\frac{\pi}{n}\right)$, respectively.
This will give us the area of a single isosceles triangle as $(2)\left(\frac{1}{2}\right) r \sin \left(\frac{\pi}{n}\right) r \cos \left(\frac{\pi}{n}\right)=\frac{r^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$ and the limit we wish to compute is

$$
\lim _{n \rightarrow \infty} \frac{r^{2}}{2} \frac{\sin \left(\frac{2 \pi}{n}\right)}{\frac{1}{n}}
$$

which is precisely r^{2} times the limit we computed in part 2 . Thus the final answer in this case is πr^{2} as we expected.
2.2 Use the Principle of Mathematical Induction to prove the constant multiple rule

$$
\begin{equation*}
\sum_{k=1}^{n} c a_{k}=c \sum_{k=1}^{n} a_{k} \tag{Display1.}
\end{equation*}
$$

where c is a constant.

1. First we note that the formula in Display 1 is true when $n=1$ because

$$
\sum_{k=1}^{1} c a_{k}=\left(c a_{1}\right)=c\left(a_{1}\right)=c \sum_{k=1}^{1} a_{k}
$$

2. Now we show that if we know that the formula in Display 1 is true when the n is at the top of the Sigma, then the formula will also be true when $n+1$ is at the top of the Sigma. Specifically, we show that $\sum_{k=1}^{n+1} c a_{k}=c \sum_{k=1}^{n+1} a_{k}$ is a logical consequence of $\sum_{k=1}^{n} c a_{k}=c \sum_{k=1}^{n} a_{k}$.
Note that we can break up the sum of the $n+1$ terms in $\sum_{k=1}^{n+1} c a_{k}$ into the sum of the first n terms plus the very last (the $n+1$ st) term.

$$
\sum_{k=1}^{n+1} c a_{k}=\sum_{k=1}^{n} c a_{k}+c a_{n+1}
$$

Continuing we have

$$
\begin{aligned}
\sum_{k=1}^{n+1} c a_{k} & =\left(\sum_{k=1}^{n} c a_{k}\right)+c a_{n+1} \\
& =\left(c \sum_{k=1}^{n} a_{k}\right)+c a_{n+1} \quad \text { because Display } 1 \text { is assumed to hold with } n \text { at the top } \\
& =c\left(\sum_{k=1}^{n} a_{k}+a_{n+1}\right) \quad \text { by factoring } c \text { out of the two terms } \\
& =c \sum_{k=1}^{n+1} a_{k} \quad \text { since the inside of the parentheses is the sum of all } n+1 \text { terms. }
\end{aligned}
$$

Thus, we have shown that if the formula in Display 1 holds for some positive integer n, then it also holds for the next positive integer $n+1$. Since we know it holds for the integer 1 we can conclude it holds for every positive integer.

