Technology used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (20 points) On the attached sheet of graph paper, sketch the graph of the function f that satisfies the following conditions.

Points on the graph of f
Inputs where $f^{\prime}(x)$ Does Not Exist
Inputs where $f^{\prime}(x)=0$
Intervals where $f^{\prime}(x)>0$
Intervals where $f^{\prime}(x)<0$
Intervals where $f^{\prime \prime}(x)>0$
Intervals where $f^{\prime \prime}(x)<0$
Limit information

```
\((-4,-1),(-3,1),(-1,-2),(0,0),(3,2),(4,4)\)
\(x=-4, x=-1\)
\(x=-3, x=3\)
\((-\infty,-3),(-1,3)\)
\((-3,-1)\)
\((-\infty,-4),(3,4)\)
\((-4,-1),(-1,3),(4, \infty)\)
\(\lim _{x \rightarrow-4} f^{\prime}(x)=\infty\)
    \(\lim _{x \rightarrow-1^{-}} f^{\prime}(x)=-\infty\)
    \(\lim _{x \rightarrow-1^{+}} f^{\prime}(x)=2\)
```

2. (15 points) Find the absolute maximizers, minimizers, maximum and minimum of $f(x)=x^{2 / 3}$ on $[-1,8]$ or show they do not exist.
3. Given the function $f(x)=-x^{3}+3 x^{2}-1$.
(a) (10 points) Find the absolute maximum of f on $[0, \infty)$.
(b) (10 points) Use calculus to carefully explain why this is an absolute maximum.
4. (20 points) Given the function $f(x)=\left(x^{2}-1\right)^{2}$.
(a) Find all critical points of f.
(b) Find all second order critical points of f.
(c) Determine all intervals where f is strictly increasing and all intervals where f is strictly decreasing.
(d) Determine all intervals where f is concave up and all intervals where f is concave down.
(e) Classify the critical points as local maximizers, local minimizers or neither.
5. (15 points) Use Rolle's Theorem or the Mean Value Theorem to show that if f is a polynomial with at least three zeros, say $f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)=0$, then there must be a point c at which $f^{\prime \prime}(c)=0$.
