Spring 2000

Exam 6

Name

April 14, 2000

Technology used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

The Problems

1. (20 points) On the attached sheet of graph paper, sketch the graph of the function f that satisfies the following conditions.

Points on the graph of f	(-4, -1), (-3, 1), (-1, -2), (0, 0), (3, 2), (4, 4)
Inputs where $f'(x)$ Does Not Exist	$x = -4, \ x = -1$
Inputs where $f'(x) = 0$	$x = -3, \ x = 3$
Intervals where $f'(x) > 0$	$(-\infty, -3), (-1, 3)$
Intervals where $f'(x) < 0$	(-3, -1)
Intervals where $f''(x) > 0$	$(-\infty, -4), (3, 4)$
Intervals where $f''(x) < 0$	$(-4, -1), (-1, 3), (4, \infty)$
Limit information	$\lim_{x \to -4} f'(x) = \infty$
	$\lim_{x \to -1^{-}} f'(x) = -\infty$
	$\lim_{x \to -1^+} f'(x) = 2$

- 2. (15 points) Find the absolute maximizers, minimizers, maximum and minimum of $f(x) = x^{2/3}$ on [-1, 8] or show they do not exist.
- 3. Given the function $f(x) = -x^3 + 3x^2 1$.
 - (a) (10 points) Find the absolute maximum of f on $[0, \infty)$.
 - (b) (10 points) Use calculus to carefully explain why this is an **absolute** maximum.
- 4. (20 points) Given the function $f(x) = (x^2 1)^2$.
 - (a) Find all critical points of f.
 - (b) Find all second order critical points of f.
 - (c) Determine all intervals where f is strictly increasing and all intervals where f is strictly decreasing.
 - (d) Determine all intervals where f is concave up and all intervals where f is concave down.
 - (e) Classify the critical points as local maximizers, local minimizers or neither.
- 5. (15 points) Use Rolle's Theorem or the Mean Value Theorem to show that if f is a polynomial with at least three zeros, say $f(x_1) = f(x_2) = f(x_3) = 0$, then there must be a point c at which f''(c) = 0.