March 10, 2000

Technology used:

Directions: Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (8 points each) Evaluate the following derivatives. Do not simplify.
(a) $y=\left(x^{3}+1\right) \sin (x)$
(b) $y=\frac{x^{2}+1}{1+\sec (x)}$,
(c) $T=\left(2 s^{-4}+3 s^{-2}+2\right)^{-6}$,
(d) $f(x)=\sqrt{5 x-8}$,
(e) $g(x)=\ln \left(\sin \left(x^{2}+7\right)\right)$,
(f) Evaluate

$$
\frac{d^{4}}{d x^{4}}\left[4 x^{3}-2 x^{5}\right]
$$

2. (10 points) Use the quotient rule and the derivatives of $\sin (x)$ and $\cos (x)$ to show

$$
\frac{d}{d x} \cot (x)=-\csc ^{2}(x) .
$$

3. (8 points each) Use the following table of outputs for the functions f, f^{\prime}, g and g^{\prime} to compute the

indicated derivatives. | x | f | f^{\prime} | g | g^{\prime} |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -2 | -0.5 | 3 | 4 |
| 2 | -4 | -1 | 1 | -3 |
| 3 | 0 | 0 | 9 | 2 |
| 4 | 3 | 2 | 4 | 0 |

(a) Find $F^{\prime}(4)$ if $F(x)=f(x)-3 g(x)$
(b) Find $H^{\prime}(2)$ if $H(x)=2+f(g(x))$.
4. (15 points) Do one of the following
(a) Suppose a pebble is thrown vertically upward from the top of a 800 foot high building with an initial velocity of 32 feet per second.
i. Find the height of the pebble at $t=3 \mathrm{~s}$.
ii. Find the velocity of the pebble at $t=3 \mathrm{~s}$.
iii. Find the velocity of the pebble when it hits the ground.
iv. Find the maximum height of the pebble.
(b) An object moves along a coordinate line with position at time t (seconds) given by $x(t)=$ $t+2 \cos (t)$ (meters). Find those times t from 0 to π when the object is moving forward and also slowing down.
5. (11 points) Do one of the following.
(a) Each of the following limits represents the derivative of some function f at some number c. State f and c in each case.
i.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}
$$

ii.

$$
\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}
$$

iii.

$$
\lim _{x \rightarrow 1} \frac{x^{9}-1}{x-1}
$$

(b) Prove for a differentiable function f and a constant c,

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]
$$

by using the (limit) definition of derivative and the fact

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

