February 25, 2000

Technology used:

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. Use the definition (the limit form) of derivative to find $f^{\prime}(x)$ if $f(x)=\frac{1}{2 x+1}$.
2. Below is the graph of a function on a grid. Assuming the grid lines are spaces 1 unit apart both vertically and horizontally, sketch the graph of the derivative function over the same interval. Use the same
grid for your sketch.
3. State the definition of:
(a) A function f being continuous at $x=c$.
(b) A function f being differentiable at $x=c$.
4. Given the function $f(x)=\left\{\begin{aligned} x^{2}-6, & x<2 \\ -2, & x=2 \\ A x-12, & x>2\end{aligned}\right]$
(a) Determine, with explanation, a value of A that makes f continuous at $x=2$ or explain why no such number A exists.
5. Do one of the following.
(a) When working with the exponential function $f(x)=3^{x}$, some people prefer to use the function $g(x)=e^{k x}$ where $k=\ln (3)$. Use logarithm and exponential rules to show these are really the same function.
(b) Determine the exact values of each of the following.
i. $\arcsin (1)$
ii. $\arctan (1)$
iii. $\cos (\arccos (\sqrt{2} / 2))$
iv. $\arcsin (\sin (12 \pi))$ [Be careful.]
v. $\exp (3 \ln (4))$.
6. Do one of the following.
(a) Without using a calculator, determine the following limits. Be sure to briefly justify your answer. i.

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x}
$$

ii.

$$
\lim _{x \rightarrow 0} \frac{1}{1+3^{x}}
$$

iii.

$$
\lim _{x \rightarrow 2} \frac{x^{2}+5 x-14}{3 x^{2}-3 x-6}
$$

(b) Without using a calculator, determine the following limits. Be sure to justify your answer. i.

$$
\lim _{x \rightarrow 1^{-}} \frac{10}{1+2^{1 /(x-1)}}
$$

ii.

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) \text { Hint: } \frac{\infty}{\infty} \text { is a "be careful" (indeterminate) form. }
$$

