February 11, 2000

Technology used:

Directions: Be sure to show all of your work. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (15 points) Do one of the following.
(a) A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 10 cm by 22 cm by cutting out equal squares of side x at each corner and then folding up the sides. Express the volume V of the box as a function of x. Include the domain of your function.
(b) A closed box with a square base is to have a volume of 300 cubic feet. The material for the top and bottom of the box costs $\$ 2.00$ per square foot and the material for the sides costs $\$ 1.00$ per square foot. Express the cost of building the box as a function of the length of its base. Include the domain of your function.
2. (15 points each) Do two of the following.
(a) Suppose the graph of a function f is given. Write equations for the graphs that are obtained from the graph of f as follows.
i. Shift 3 units upward and 4 units to the left.
ii. Reflect about the y-axis then stretch vertically by a factor of 2 .
(b) Graph $f(x)=\arcsin (2 x)$, not by plotting points or using your calculator, but by starting with the graph of $g(x)=\sin (x)$ and then applying the appropriate transformations.
(c) Write the equation for the graph that is obtained by reflecting the graph of $y=x^{3}$ about the line $x=2$.
3. (15 points) Find the exact value of
(a) $\sin \left(\arccos \left(\frac{\sqrt{5}}{4}\right)\right)$
(b) $\sec (\arctan (x))$
4. (15 points) Given $f(x)=\frac{x+7}{x-5}, x \neq 5$. Find f^{-1}, if it exists.
5. (15 points) Evaluate the following limits or show they do not exist.
(a)

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{3 x^{2}+5 x-7}
$$

(b)

$$
\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}
$$

6. (10 points) Provide an $\varepsilon-\delta$ proof that $\lim _{x \rightarrow 3} \frac{2 x^{2}-7 x+3}{x-3}=5$.
