Algebra Review Quiz

January 18, 2006

Name

Directions: This quiz covers a number of algebraic concepts and techniques that we will use frequently this semester. It should give you a reasonable idea of what algebra skills you should review.
Without using a calculator, do as many of these as you can in the time provided.

The Problems

1. Do you know the names and/or greek symbols for the following:
(a) β is Beta
(b) Σ is a capitalized Sigma
(c) alpha $=\alpha$
(d) theta $=\theta$
2. Give the exact values of the first three and complete the identities of the last two of the following:
(a) $\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$
(b) $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
(c) $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$
(d) $\arctan (1)=\frac{\pi}{4}$
(e) $\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)$
(f) $\frac{\sec (x)}{\tan (x)}=\frac{1}{\sin (x)}=\csc (x)$
3. Simplify the following:
(a)

$$
6+x-2(3-4(x-y))=9 x-8 y
$$

(b)

$$
(x+2)\left(x^{2}-2 x+4\right)=x^{3}+8
$$

(c)

$$
\frac{x^{2}-9}{x^{2}-4 x-21}=\frac{x-3}{x-7}
$$

(d)

$$
\frac{x^{3}-4 x}{x^{1 / 2}}=x^{1 / 2}\left(x^{2}-4\right)
$$

4. Factor the following:
(a)

$$
x^{2}-(x-3)^{2}=3(2 x-3)=6 x-9
$$

(b)

$$
x(x-1)^{-1 / 2}+2(x-1)^{1 / 2}=(x-1)^{-1 / 2}(3 x-2)
$$

5. Which of the following are equal to $\sqrt{x^{2}+7^{2}}$ The answer is e. - None of the above.
(a) $x+7$
(b) $|x|+7$
(c) $|x+7|$
(d) all of the above
(e) none of the above
6. If the rule for a function f is given by $f(x)=2 x^{2}+3 x$, evaluate and simplify $f(x+h)-f(x)$.

$$
h(2 h+4 x+3)
$$

7. Find the set of all real numbers x that satisfy the following inequalities. Write your solutions in both set notation and interval notation.
(a) $\{x:-3 \leq 3-2 x \leq 5\}=\{x:-1 \leq x \leq 3\}=[-1,3]$
(b) $\left\{x: x^{2}+5 x-14<0\right\}=\{x:-7<x<2\}=(-7,2)$
(c) $\{x:|x-5|<2\}=\{x: 3<x<7\}=(3,7)$
(d) $\{x:|7-2 x|<5\}=\{-1<x<6\}=(-1,6)$
8. Sketch the graph of $(x-1)^{2}+(y+2)^{2}=4$.

This is a circle of radius 2 centered at the point $(1,-2)$.
9. Where do the graphs of $y=x^{2}$ and $y=x+12$ intersect? $-\{x: x=-3$ or $x=4\}$.
10. If an isosceles triangle with two sides equal to x has a perimeter of 100 , write the area of the triangle as a function of x. $-A=25 \sqrt{x^{2}-2500}$.
11. Find the distance between the points $(2,-1)$ and $(3,5) .-\sqrt{37}$.
12. What is the relationship between the graphs of the following functions?
(a) $y=f(x)$ and $y-k=f(x)$ - the second graph is the first graph shifted k units vertically.
(b) $y=f(x)$ and $y=f(x-h)$ - the second graph is the first graph shifted h units horizontally.
(c) $y=f(x)$ and $y=-4 f(x)$ - the second graph is the result of taking each point of the first graph and plotting it on the other side of and four times as far from the x-axis. In other words, flip the graph around the x-axis and stretch it vertically by a factor of 4 .
(d) $y=f(x)$ and $y=f(3 x)$ - the second graph is the result of taking each point of the first graph and plotting it $1 / 3$ as far from the y-axis. In other words, compress the graph horizontally by a factor of 3 .
13. If $f(x)=\sin (x)$ and $g(x)=3 x-7$, what are the following?
(a) $(f+g)(x)=\sin (x)+3 x-7$
(b) $(3 f-4 g)(x)=3 \sin (x)-12 x+28$
(c) $\left(\frac{2 f}{g}\right)(x)=\frac{2 \sin (x)}{3 x-7}$
(d) $(f \circ g)(x)=f(g(x))=\sin (3 x-7)$
(e) $(g \circ f)(x)=3 \sin (x)-7$
14. Explain why the answer to the following question is not yes. "Is $-x$ a negative number?" - It depends on the value of x. If x is already negative then $-x$ is positive.
15. Explain why the following is not correct.

$$
\frac{(x-7)\left(x^{2}+3\right)-\left(x^{3}+x\right)}{(x-7)(x+1)}=\frac{\left(x^{2}+3\right)-\left(x^{3}-x\right)}{(x+1)}
$$

- The problem is that there is no $(x-7)$ in the second term of the numerator on the left hand side. The result would be correct if the numerator of the left hand side had been $(x-7)\left(x^{2}+3\right)-$ $(x-7)\left(x^{3}+x\right)$. Then, since both terms would have had a factor of $(x-7)$, it could have been factored out and cancelled with the one in the denominator.

16. Explain why $\sqrt{49} \neq-7$. - \sqrt{A} means the positive square root of A. So \sqrt{A} can never be negative. In symbols, the definition of $\sqrt{x^{2}}$ is $\sqrt{x^{2}}=|x|$.
17. Does -9^{2} equal +81 or -81 ? - The answer is -81 . In order to get +81 we would need parentheses: $(-9)^{2}=81$.
18. Take a look at the website http://www.math.vanderbilt.edu/~schectex/commerrs/for a discussion of many other common mathematical errors.
