March 30, 2006
Name

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Show all your work: partial credit depends on it

Work This Problem on this Sheet

(5 points each) Differentiate the following. Do not simplify.

1. $f(x)=\frac{e^{2 x+7}}{\cos (x)}$
2. $y=e^{(\arctan (x))}$
3. $f(x)=\ln \left(\sec \left(x^{2}+7\right)\right)$
4. $\frac{d}{d x}\left[x \frac{d}{d x}(\cos (x))\right]$
5. Find $\frac{d y}{d x}$ if $y=u^{3}-1$ and $u=\ln (x)$

Do any five (5) of the following.

1. (7,8 points) Use implicit or logarithmic differentiation to find $\frac{d y}{d x}$ for each of the following.
(a) $y=\frac{\left(x^{2}+1\right)^{3}(x+1)^{5}}{(x-4)^{7}\left(x^{2}+x\right)^{11}}$
(b) $x^{3} y+\cos (x+y)=2 x$
2. (15 points) A block of ice in the shape of a cube originally having volume $1,000 \mathrm{~cm}^{3}$ is melting in such a way that the length of each of its edges is changing at the rate of $1 \mathrm{~cm} / \mathrm{hr}$. At what rate is its surface area decreasing at the time its volume is $27 \mathrm{~cm}^{3}$? Assume the block of ice maintains its cubical shape.
3. (15 points) Do one (1) of the following.
(a) Use differentials to approximate $\cos \left(\frac{101 \pi}{600}\right)$
(b) Use differentials to estimate the change in the volume of a cone if the height of the cone is increased from 10 cm to 10.01 cm while the radius of the base stays fixed at 2 cm .
4. (15 points) The absolute maximum and absolute minimum of the following function might or might not exist. If they do not, explain why. If they do, use the methods from Section 1 of Chapter 4 to find them.

$$
f(x)=\sqrt{x}(x-5)^{1 / 3} \quad \text { on }[0,4]
$$

5. (15 points) Use the quotient rule to show $\frac{d}{d x} \cot (x)=-\csc ^{2}(x)$.
6. (15 points) An object moves along a coordinate line with position at time t given by $x(t)=t-2 \sin (t)$. Find those times t from 0 to 2π when the object is slowing down.
