Mathematics 121-A

Exam 3

March 30, 2006

Name

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Show all your work: partial credit depends on it

Work This Problem on this Sheet

(5 points each) Differentiate the following. Do ${\bf not}$ simplify.

1.
$$f(x) = \frac{e^{2x+7}}{\cos(x)}$$

- 2. $y = e^{(\arctan(x))}$
- 3. $f(x) = \ln\left(\sec\left(x^2 + 7\right)\right)$
- 4. $\frac{d}{dx}[x\frac{d}{dx}(\cos{(x)})]$
- 5. Find $\frac{dy}{dx}$ if $y = u^3 1$ and $u = \ln(x)$

Do any five (5) of the following.

1. (7,8 points) Use implicit or logarithmic differentiation to find $\frac{dy}{dx}$ for each of the following.

(a)
$$y = \frac{(x^2+1)^3(x+1)^5}{(x-4)^7(x^2+x)^{11}}$$

(b) $x^3y + \cos(x+y) = 2x$

- 2. (15 points) A block of ice in the shape of a cube originally having volume $1,000 \text{ cm}^3$ is melting in such a way that the length of each of its edges is changing at the rate of 1 cm/hr. At what rate is its surface area decreasing at the time its volume is 27 cm^3 ? Assume the block of ice maintains its cubical shape.
- 3. (15 points) Do **one** (1) of the following.
 - (a) Use differentials to approximate $\cos\left(\frac{101\pi}{600}\right)$
 - (b) Use differentials to estimate the change in the volume of a cone if the height of the cone is increased from 10 cm to 10.01 cm while the radius of the base stays fixed at 2 cm.
- 4. (15 points) The absolute maximum and absolute minimum of the following function might or might not exist. If they do not, explain why. If they do, use the methods from Section 1 of Chapter 4 to find them.

$$f(x) = \sqrt{x} (x-5)^{1/3}$$
 on $[0,4]$

- 5. (15 points) Use the quotient rule to show $\frac{d}{dx} \cot(x) = -\csc^2(x)$.
- 6. (15 points) An object moves along a coordinate line with position at time t given by $x(t) = t 2\sin(t)$. Find those times t from 0 to 2π when the object is slowing down.