February 23, 2006
Name

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Show your work: answers that can be obtained from a calculator will not receive credit.
- Partial credit is awarded for correct approaches so justify your steps.

Do any seven (7) of the following.
Do not use a calculator to justify any problem except number 2 .

1. [10 points] Use an ε, δ proof to show that $\lim _{x \rightarrow 4}(-2 x+1)=-7$.
2. [10 points] Given the limits $\lim _{x \rightarrow 1^{+}} \frac{2}{x-1}, \lim _{x \rightarrow 1^{+}} \frac{x^{2}-2 x+1}{x-1}$, and $\lim _{x \rightarrow 6} \frac{\tan (\pi / x)}{x-1}$
(a) In your own words, explain why the first limit does not exist but the other two do.
(b) Evaluate the last two limits.
3. [15 points] Use the definition of continuity to determine if the function $f(x)=\left\{\begin{array}{c}\frac{x^{2}-9}{x+3}, \text { if } x<3 \\ 6, \text { if } x=3 \\ 5 x-9, \text { if } x>3\end{array}\right.$ is continuous at $x=3$.
4. [15 points] Do all of the following:
(a) Simplify $\log _{2}(16) \log _{3}\left(\frac{1}{27}\right)$
(b) Find the numbers x that solve the equation $\frac{e^{x^{2}}}{e^{x+6}}=1$
(c) If $\log _{\sqrt{b}}(106)=2$ what is $\sqrt{b-25}$?
5. [15 points] Compute the derivative of $f(x)=\frac{x}{x+3}$ by evaluating the limit $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
6. [20 points] Use the derivative rules for the following.
(a) Find $f^{\prime}(x)$ if $f(x)=3 x^{4}-7 x^{2}+\frac{2}{x}+\sqrt{x}$.
(b) If $h(x)=\left(x^{3}+x^{2}+1\right)\left(3 x^{2}-4\right)$ use the product rule to find $h^{\prime}(x)$.
(c) Find $\frac{d y}{d x}$ if $y=\frac{x^{3}+x}{2 x^{2}-1}$
(d) Find $\frac{d^{3} y}{d t^{3}}$ where $y=2 t^{4}-3 t^{3}+4 t-6$
7. [15 points] Do one (1) of the following
(a) Does the function $f(x)=x^{3}+2 x^{2}-3 x$ satisfy the equation $y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}=3 x^{2}+10 x+7$?
(b) Find an equation for a tangent line to the graph of $f(x)=\frac{3 x+5}{1+x}$ that is perpendicular to the line $2 x-y=1$. [There are two.]
