Introduction to Graph Theory

Math 434

Noah Chang Jenny Nichols

Preliminary Definitions

Definition: A graph $G=(V, E)$ is a mathematical structure consisting of two sets V and E The elements of V are called vertices, and the elements of E are called edges. Each edge has a set of one or two vertices associated to it, which are called its endpoints.
Definition: A self-loop is an edge that joins a single endpoint to itself.
Definition: A proper edge is an edge that is not a self-loop.
Definition: A multi-edge is a collection of two or more edges having identical endpoints.
Definition: Adjacent vertices are two vertices that are joined by an edge.
Definition: Adjacent edges are two edges that have an endpoint in common.
Definition: If vertex v is an endpoint of edge e, then v is said to be incident on e, and e is incident on v.
Definition: The degree of a vertex v in a graph G, denoted $\operatorname{deg}(v)$ is the number of proper edges incident on v plus twice the number of self-loops.
Definition: A directed edge is an edge, one of whose endpoints is designated as the tail, and whose other endpoint is designated as the head.
Definition: A directed graph (digraph) is a graph each of whose edges is directed.
Definition: A weighted graph is a graph in which each edge is assigned a number, called its edge-weight.
Definition: A graph or digraph is simple if it has neither self-loops nor multi-edges.
Definition: The edge-complement of a simple graph G, denoted G^{c}, is the graph on the same vertex-set, such that two vertices are adjacent in G^{c} if and only
Definition: A complete graph is a simple graph such that every pair of vertices is joined by an edge. Any complete graph on n vertices is denoted K_{n}.
Definition: A regular graph is a graph whose vertices all have equal degree. A k-regular graph is a regular graph whose common degree is k.
Definition: A path from vertex v_{0} to vertex v_{n} is an alternating sequence of vertices and edges

$$
P=<v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{n-1}, e_{n}, v_{n}>
$$

such that the endpoints of e_{i} are v_{i-1}, v_{i} and there are no repeated edges or vertices (except possibly the initial and final vertices).
Definition: The length of a path is the number of edges in the path.
Definition: A graph is connected if for every pair of vertices u and v, there is a path from u to v.
Definition: A path starting and ending at the same vertex is a cycle (except for self loops).
Definition: An acyclic graph has no cycles.

Graph Representations

Definition: The incidence matrix of a graph G is the matrix I_{G} whose rows and columns are indexed by some orderings of V_{G} and E_{G}, respectively, such that

$$
I_{G}[v, e]=\left\{\left.\begin{array}{cc}
0 & \text {,if } v \text { is not an endpoint of } e \\
1 & , \text { if } v \text { is an endpoint of } e \\
2 & , \text { if } e \text { is a self-loop at } v
\end{array} \right\rvert\,\right.
$$

Definition: The adjacency matrix of a graph G, denoted A_{G}, is the matrix whose rows and columns are both indexed by identical orderings of V_{G}, such that

$$
A_{G}[u, v]=\left\{\left.\begin{array}{c}
\text { the number of edges between } u \text { and } v \text { if } u \neq v \\
\text { the number of self-loops at } v \text { if } u=v
\end{array} \right\rvert\,\right.
$$

Graph Structure

Definition: A subgraph of a graph G is a graph H whose vertices and edges are all in G. If H is a subgraph of G, we may also say that G is a supergraph of H.
Definition: For a given graph G, the subgraph induced on a vertex subset U of V_{G}, denoted by $G(U)$, is the subgraph of G whose vertex-set is U and whose edge-set consists of all edges in G that have both endpoints in U. That is,

$$
V_{G(U)}=U \quad \text { and } \quad E_{G(U)}=\left\{e \in E_{G}:\{\text { the endpoints of } e\} \subseteq U\right\}
$$

Definition: If v is a vertex of a graph G, then the vertex-deletion subgraph $G-v$ is the subgraph induced by the vertex-set $V_{G}-\{v\}$. That is,

$$
V_{G-v}=V_{G}-\{v\} \quad \text { and } \quad E_{G-v}=\left\{e \in E_{G}: v \notin\{\text { endpoints of } e\}\right\}
$$

Definition: If e is an edge of a graph G, then the edge-deletion subgraph $G-e$ is the subgraph induced by the edge-set $E_{G}-\{e\}$. That is,

$$
V_{G-e}=V_{G} \quad \text { and } \quad E_{G-e}=E_{G}-\{e\}
$$

Definition: A graph isomorphism $f: G \rightarrow H$ is a pair of one-to-one, onto functions

$$
f_{V}: V_{G} \rightarrow V_{H} \quad \text { and } \quad f_{E}: E_{G} \rightarrow E_{H}
$$

such that for every edge $e \in E_{G}$, the function f_{V} maps the endpoints of e to the endpoints of the edge $f_{E}(e)$.
Note: Graph isomorphism preserve incidence and edge multiplicity.
Note: The relation $\approx($ "isomorphic to") is an equivalence relation.
Definition: Each equivalence class under \approx is called an isomorphism type.
Definition: A numerical graph invariant is a numerical property of all graphs, such that any two isomorphic graphs have the same value.
Some graph invariants:

1. The number of vertices
2. The number of edges
3. The length of a particular path
4. For any possible subgraph, the number of distinct copies
5. For a simple graph, the edge-complement

The Graph-Reconstruction Problem

Definition: Let G be a graph with $V_{G}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then the vertex-deletion subgraph list of G is the list of the subgraphs $G-v_{1}, \ldots, G-v_{n}$.
Definition: The graph-reconstruction problem is to decide whether two non-isomorphic graphs with three or more vertices can have the same vertex-deletion subgraph list.
Note: Originally formulated by P.J. Kelly and S.M. Ulam in 1941, this problem is among the foremost unsolved problems in graph theory, because it is concerned with a list of unlabeled graphs.
The Reconstruction Conjecture: Let G and H be two graphs with at least three vertices and with $V_{G}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{H}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$, such that $G-v_{i} \approx H-w_{i}$, for each $i=1, \ldots, n$. Then $G \approx H$.

Automorphisms

Review: A graph isomorphism $f: G \rightarrow H$ is a pair of one-to-one, onto functions

$$
f_{V}: V_{G} \rightarrow V_{H} \quad \text { and } \quad f_{E}: E_{G} \rightarrow E_{H}
$$

such that for every edge $e \in E_{G}$, the function f_{V} maps the endpoints of e to the endpoints of the edge $f_{E}(e)$.
Definition: An automorphism of a graph G is an isomorphism f that maps G to itself.
Terminology: The functions f_{V} and f_{E} of a graph automorphism are referred to as the vertex-permutation and the edge-permutation, respectively.
Note: The vertex-permutation of an automorphism on a simple graph completely determines the automorphism. Theorem: Let f and g be automorphisms of the same simple graph G, such that $f_{V}=g_{V}$. Then $f_{E}=g_{E}$.
Review: Let P be a nonempty collection of permutations on the same finite set of objects Y such that P is closed under composition. Then the mathematical structure $[P: Y]$ is a permutation group.
Theorem: The set of all automorphisms of a graph is a permutation group.
Definition: The automorphism group of a graph G is the permutation group of all automorphisms of the graph G. It is denoted $\operatorname{Aut}(G)$. Its restrictions to V_{G} and to E_{G} are denoted $A u t_{V}(G)$ and $A u t_{E}(G)$, respectively.
Cycle Index of a Permutation Group
Definition: The cycle structure of a permutation is the number of cycles of each length in its disjoint cycle form. Definition: Let $\mathbf{P}=[P: Y]$ be a permutation group on a set Y of n objects, and let $\pi \in P$. The cycle-structure monomial of π is the n-variable monomial

$$
\zeta(\pi)=\prod_{k=1}^{n} z_{k}^{r_{k}}=z_{1}^{r_{1}} z_{2}^{r_{2}} \ldots z_{n}^{r_{n}}
$$

where z_{k} is a formal variable and r_{k} is the number of k-cycles in the disjoint cycle form of π.
Definition: Let $\mathbf{P}=[P: Y]$ be a permutation group on a set of n objects. Then the cycle index polynomial of \mathbf{P} is the polynomial

$$
Z_{\mathbf{P}}\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{|P|} \sum_{\pi \in P} \zeta(\pi)
$$

Review of Burnside's Lemma

Definition: Let $\mathbf{P}=[P: Y]$ be a permutation group, and let $y \in Y$. The stabilizer of y is the subgroup $\operatorname{Stab}(y)=$ $\{\pi \in P: \pi(y)=y\}$.
Definition: Let $\mathbf{P}=[P: Y]$ be a permutation group, and let $\pi \in P$. The fixed-point set of a permutation π is the subset $\operatorname{Fix}(\pi)=\{y \in Y: \pi(y)=y\}$.
Definition: For a given automorphism π on a graph, the fixed-vertex set and fixed-edge set are the fixed-point sets of π_{V} and π_{E}, respectively.
Definition: Let $\mathbf{P}=[P: Y]$ be a permutation group. The orbit of an object $y \in Y$ is the set $\{\pi(y): \pi \in P\}$ of all the objects onto which y is permuted.
Lemma: Let $\mathbf{P}=[P: Y]$ be a permutation group. Then

$$
\sum_{y \in Y}|\operatorname{Stab}(y)|=\sum_{\pi \in P}|F i x(\pi)|
$$

Lemma: Let $\mathbf{P}=[P: Y]$ be a permutation group and $y \in Y$. Then

$$
\operatorname{Stab}(y)=\frac{|P|}{|\operatorname{orbit}(y)|}
$$

Lemma: Let $\mathbf{P}=[P: Y]$ be a permutation group with n orbits. Then

$$
\sum_{y \in Y} \frac{1}{|\operatorname{orbit}(y)|}=n
$$

Lemma (Burnside's): Let $P=[P: Y]$ be a permutation group with n orbits. Then

$$
n=\frac{1}{|P|} \sum_{\pi \in P}|F i x(\pi)|
$$

Graph Colorings

Definition: A k-coloring of a set Y is a mapping f from Y onto the set $\{1,2, \ldots, k\}$, in which the number $f(y)$ is called the color of y. Any k-coloring of Y is also called a coloring.
Definition: A $(\leq k)$-coloring of Y is a coloring that uses k or fewer colors.
Definition: Let $\mathbf{P}=[P: Y]$ be a permutation group acting on a set Y, and let f and g be $(\leq k)$-colorings of Y. They are \mathbf{P}-equivalent colorings if there is a permutation $\pi \in P$ such that $g=f \pi$, that is, if for every object $y \in Y$, the color $g(y)$ is the same as the color $f(\pi(y))$.
Definition: Let G be a graph. Two vertex-colorings are equivalent vertex-colorings if they are $A u t_{V}(G)$ equivalent.
Definition: Let G be a graph. Two edge-colorings are equivalent edge-colorings if they are $A u t_{E}(G)$-equivalent.
Notation: The set of all $(\leq k)$-colorings of the elements of a set Y is denoted $\operatorname{Col}_{k}(Y)$. The set of \mathbf{P}-equivalence classes of $\operatorname{Col}_{k}(Y)$ is denoted $\left\{\operatorname{Col}_{k}(Y)\right\}_{P}$.

Counting Vertex- and Edge- Colorings

Proposition: Let $\mathbf{P}=[P: Y]$ be a permutation group acting on a set Y. Let $f \in \operatorname{Col}_{k}(Y)$ be a $(\leq k)$-coloring of Y, and let $\pi \in P$ be a permutation in P. Then the composition $f \pi$ of permutation π followed by coloring f is a coloring in $\operatorname{Col}_{k}(Y)$.
Corollary: Let $\mathbf{P}=[P: Y]$ be a permutation group acting on a set Y, and let $\pi \in P$. Then the mapping $\pi_{Y C}: \operatorname{Col}_{k}(Y) \rightarrow \operatorname{Col}_{k}(Y)$ defined by
$\pi_{Y C}(f)=f \pi$, for every coloring $f \in \operatorname{Col}_{k}(Y)$ is a permutation on the set $\operatorname{Col}_{k}(Y)$.
Definition: The mapping defined above is called the induced permutation action of π on $\operatorname{Col}_{k}(Y)$.
Definition: Let $\mathbf{P}=[P: Y]$ be a permutation group acting on a set Y. The collection $\mathbf{P}_{\mathbf{C}}=[P: C o l k(Y)]$ of induced permutations on $\operatorname{Col}_{k}(Y)$ is called the induced permutation group.
Theorem: Let $\mathbf{P}=[P: Y]$ be a permutation group. Then

$$
\left|[\operatorname{Col}(Y)]_{P}\right|=Z_{\mathbf{P}}(k, \ldots, k)
$$

Counting Simple Graphs

Step 1: Calculate the Cycle Index of $A u t_{V}\left(K_{n}\right)$
Step 2: Calculate the Cycle Index of $A u t_{E}\left(K_{n}\right)$
Step 3: Evaluate the Cycle Index of $A u t_{E}(G)$

Pőlya Substitution

Definition: Let $Z_{\mathbf{P}}\left(z_{1}, \ldots, z_{n}\right)$ be the cycle-index polynomial for a permutation group $\mathbf{P}=[P: Y]$ on a set Y of n objects. The Pőlya substitute of order k for the cycle-index variable z_{j} is the k-variate polynomial

$$
x_{1}^{j}+x_{2}^{j}+\ldots+x_{k}^{j}
$$

Definition: Let $Z_{P}\left(z_{1}, \ldots, z_{n}\right)$ be the cycle-index polynomial for a permutation group $\mathbf{P}=[P: Y]$ on a set Y of n objects. The Pőlya-counting polynomial of order k is the polynomial obtained by replacing each cylce-index variable z_{j} by its Pőlya substitute or order k. It is denoted $Z_{\mathbf{P}}\left(x_{1}+\ldots+x_{k}\right)$.

Binary Operations on Graphs

Definition: The (graph) union of two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is the graph $G \cup G^{\prime}$ whose vertex set and edge-set are the disjoint unions, respectively, of the vertex-sets and edge-sets of G and G^{\prime}.
Definition: The (cartesian) product $G \times H$ of the graphs G and H has as its vertex-set the cartesian product

$$
V_{G \times H}=V_{G} \times V_{H}
$$

and as its edges a union of two products:

$$
E_{G \times H}=\left(V_{G} \times E_{H}\right) \cup\left(E_{G} \times V_{H}\right)
$$

The endpoints of the edge (u, d) are the vertices (u, x) and (u, y), where x and y are the endpoints of edge d in graph H. The endpoints of the edge (e, w) are (u, w) and (v, w), where u and v are the endpoints of edge e in graph G.
Definition: The join $G+H$ of the graphs G and H is obtained from the graph union $G \cup H$ by adding an edge between each vertex of G and each vertex of H.
Definition: Let G and H be disjoint graphs, with $u \in V_{G}$ and $v \in V_{H}$. The vertex amalgamation $(G \cup H) /\{u=v\}$ is the graph obtained from the union $G \cup H$ by merging vertex u of graph G and vertex v of graph H into a single vertex called u. The vertex-set of this new graph is $V_{G} \cup V_{H}-\{v\}$ and the edge-set is $E_{G} \cup E_{H}$, except that vertex u replaces vertex v as an endpoint of any edge of H in which v occurs.

Traversals and Trees

Definition: A depth-first traversal is when we visit the starting node and then proceed to follow links through the graph until we reach a dead end. When we reach a dead end, we back up along the path until we find an unvisited adjacent edge.
Definition: A breadth-first traversal is when we visit the starting node and then on the first pass visit all of the nodes directly connected to it. In the second pass, we visit the nodes that are two edges away from the starting node.
Definition: A subgraph H is said to span a graph G if $V_{H}=V_{G}$.
Definition: A tree is a connected graph that has no cycles.
Theorem: Let T be a tree where v_{i} and v_{j} are arbitrary vertices. Then v_{i} and v_{j} are connected by exactly one proper path. Also, in the graph formed by adding the edge $\left\{v_{i}, v_{j}\right\}$ to T, there is exactly one cycle.
Theorem: In an (n, m) tree, $m=n-1$.
Definition: A spanning tree of a graph is a spanning subgraph that is a tree.
Proposition: A graph G is connected if and only if it has a spanning tree.
Definition: A minimum spanning tree (MST) of a weighted connected graph is a spanning subgraph of the original graph so that the subgraph is connected and the total of the edge weights is the smallest possible.

Definition: A graph is said to be biconnected if there is at least two distinct paths between any two vertices.
Definition: A biconnected component of a graph is the set of three or more vertices for which there are at least two paths between each vertex. A bicomponent can also have just two nodes and one edge connecting them. Definition: An articulation point of a graph is a vertex that shared by two biconnected components.

Puzzles

Crossing the River:
A man (m) wishes to transfer his three pets - a $\operatorname{dog}(d)$, a cat (c), and a rabbit (r) - from the left bank of a river to the right bank. He wishes to do so by swimming back and forth between the banks, carrying with him one pet at a time. However, he cannot leave the dog alone with the cat, nor the cat alone with the rabbit. How can he accomplish the transfer under these conditions?
Divide the Wine:
We are given three jugs, a, b, and c, with capacities 8,5 , and 3 quarts, respectively. Jug a is filled with wine, and our objective is to divide its contents into two equal parts by pouring the wine from one jug to another (without resorting to any measuring devices other than the three jugs). Each move will consist of either completely filling or completely emptying one of the three jugs.

References

1. Gill, Arthur. Applied Algebra for the Computer Sciences, Prentice-Hall, New Jersey, 1976.
2. Gross, Jonathan, and Jay Yellen. Graph Theory and its Applications, CRC Press, New York, 1999.
3. McConnell, Jeffery J. Analysis of Algorithms, Jones and Bartlett, Massachusetts, 2001.
