Gradient Vector Fields

1. Consider the function $z=f(x, y)=x y$. Below is a plot showing level sets for z from -15 to 15 in steps of 1 in the window $-4 \leq x \leq 4,-4 \leq y \leq 4$.
(a) Compute the gradient function $\nabla f(x, y)$
(b) On the level curve plot, draw estimates of gradient vectors at a variety of points throughout the window.
(c) For each of the points at which you estimated a gradient vector in part (b), evaluate the gradient vector from part (a). Compare your estimate with the exact value.

2. Consider the function $z=f(x, y)=x^{2}+y^{2}$. Below is a plot showing level sets for z from 0 to 17 in steps of 1 in the window $-3 \leq x \leq 3,-3 \leq y \leq 3$. (Note that the level set for $z=0$ is the point at the origin.)
(a) Compute the gradient function $\nabla f(x, y)$
(b) On the level curve plot, draw estimates of gradient vectors at a variety of points throughout the window.
(c) For each of the points at which you estimated a gradient vector in part (b), evaluate the gradient vector from part (a). Compare your estimate with the exact value.

