Earlier we saw three "standard" forms for equations of planes

$$
\begin{array}{ll}
A x+B y+C z+D=0 & \text { standard form } \\
z=m_{x} x+m_{y} y+b & \text { slopes-intercept form } \\
z-z_{0}=m_{x}\left(x-x_{0}\right)+m_{y}\left(y-y_{0}\right) & \text { point-slopes form }
\end{array}
$$

Now that we have the notation for vectors, we can add a new form that does not rely on coordinates. A plane can be specified by giving two facts about the plane: a vector \vec{n} perpendicular to the plane (called a normal vector to the plane) and a point P_{0} on the plane. The dot product gives us a geometric test for determining if a variable point P is on the plane. Here is the logic of the test:

- P is on the plane if and only if the vector $\overrightarrow{P_{0} P}$ is parallel to the plane.
- The vector $\overrightarrow{P_{0} P}$ is parallel to the plane if and only if $\overrightarrow{P_{0} P}$ is perpendicular to the normal vector \vec{n}.
- The vectors $\overrightarrow{P_{0} P}$ and \vec{n} are perpendicular if and only if their dot product is zero

$$
\vec{n} \cdot \overrightarrow{P_{0} P}=0
$$

Note that we now have a new form for the equation of a plane: $\vec{n} \cdot \overrightarrow{P_{0} P}=0$. This is called the pointnormal form for the equation of a plane. If we introduce coordinates of points and components of vectors we can see how the point-normal form is tied to the other forms for planar equations. Let P_{0} have coordinates $\left(x_{0}, y_{0}, z_{0}\right)$, the variable point P have coordinates (x, y, z) and the normal vector \vec{n} have components $\left\langle n_{x}, n_{y}, n_{z}\right\rangle$. Thus the vector $\overrightarrow{P_{0} P}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle$ and we can rewrite the point-normal form as follows:

$$
\begin{aligned}
0 & =\vec{n} \cdot \overrightarrow{P_{0} P} \\
& =\left\langle n_{x}, n_{y}, n_{z}\right\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle \\
& =n_{x}\left(x-x_{0}\right)+n_{y}\left(y-y_{0}\right)+n_{z}\left(z-z_{0}\right) \\
& =n_{x} x+n_{y} y+n_{z} z+\left(n_{x} x_{0}+n_{y} y_{0}+n_{z} z_{0}\right) .
\end{aligned}
$$

Note that the last expression is in the form $A x+B y+C z+D=0$ and the second to the last expression is two algebra steps away from the slopes-intercept form (if $n_{z} \neq 0$).

EXAMPLE:

Find the standard form for the equation of the plane that contains the point $(3,-2,4)$ and has normal vector $\langle 5,6,7\rangle$.

Solution:

Using (x, y, z) as the coordinates of a variable point P we have

$$
\begin{aligned}
0= & \vec{n} \cdot \overrightarrow{P_{0} P} \\
= & \langle 5,6,7\rangle \cdot\langle x-3, y+2, z-4\rangle \\
= & 5(x-3)+6(y+2)+7(z-4) \\
= & 5 x+6 y+7 z-15+12-28 \\
& 5 x+6 y+7 z-31
\end{aligned}
$$

So the standard form for the equation of this plane is $5 x+6 y+7 z-31=0$

Problems on Equations of Planes

1. Use the point-normal equation to determine which, if any, of the of the following points are on the plane that has normal vector $2 \widehat{i}-\widehat{j}+6 \widehat{k}$ and contains the point $(3,4,2)$.
(a) $(5,-4,0)$
(b) $(1,6,2)$
(c) $(2,8,3)$
2. Find the slopes-intercept form of the equation that contains the point $(4,2,-7)$ and has normal vector $5 \hat{i}-3 \widehat{j}+2 \widehat{k}$.
3. Find the slopes-intercept form of the equation that contains the point $(4,2,-7)$ and has normal vector $\vec{n}=\langle-6,1,5\rangle$.
4. Find the standard form of the equation of the plane that contains the point $(6,3,0)$ and is parallel to a second plane that has equation $5 x+2 y-9 z=14$.
5. Find the standard form of the equation for the plane that contains the point $(7,-2,1)$ and is perpendicular to the vector from the origin to that same point.
6. Determine a normal vector for each of the planes in Exercises 2-6 of the first handout on planes.

Solutions

1. $(5,-4,0),(2,8,3)$ on the plane, $(1,6,2)$ not
2. $z=-\frac{5}{2} x+\frac{3}{2} y$
3. $z=\frac{6}{5} x-\frac{1}{5} y-7$
4. -
5. $7 x-2 y+z-54=0$
