Hints for the exam

October 11, 2012

Technology used:

Only write on one side of each page.
Show all of your work.
Calculators may be used for numerical calculations and answer checking only.

1. [10 points] Simplify the following vector \mathbf{v} and express it using the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

$$
\mathbf{v}=(\langle 1,3,-1\rangle \cdot\langle-1,0,-2\rangle)\langle 2,1,4\rangle+(5\langle-3,-2,-1\rangle-3\langle 1,2,3\rangle)
$$

(a) Hint: Do the dot product first: $\langle 1,3,-1\rangle \cdot\langle-1,0,-2\rangle=-1+0+2=1$
2. [15 points] Draw a tree diagram and write a Chain Rule formula for the derivative $\frac{\partial w}{\partial t}$ where

$$
w=g(x, y, t), \quad x=h(u, v, t), \quad y=f(v, t)
$$

(a) Hint: it is easy to miss the $\frac{\partial g}{\partial t}$.
3. [8,7 points] Do both of the following
(a) Write an equation for the plane that is tangent to the surface $z=e^{-\left(x^{2}+y^{2}\right)}$ at the point $(0,0,1)$.
i. Hint: Don't forget to use the chain rule. The gradient at the point is $\overrightarrow{0}$.
(b) A certain plane passes through the point $P_{0}(2,3,-1)$ and the projection of the vector $\overrightarrow{O P}$ onto the normal vector of the plane is $\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$. Write an equation in standard form of the plane.
i. Any non-zero vector in the direction of a normal vector is still a normal vector.
4. [8, 7 points] Do both of the following.
(a) Articulate how gradient vectors are related to level curves/surfaces and greatest rate of change.
i. Hint: perpendiculat to level curves at the point, in the direction of greatest rate of change of the function, magnitude is the greatest rate of change of the function.
(b) Compute the directional derivative of the function $z=f(x, y)=\cos \left(x y^{2}\right)$ at the point $(0,0,1)$ and in the direction of the vector $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$.
i. Hint: $D_{\vec{u}} f(P)$ requires a unit vector \vec{u} in the direction of change.
5. [9,6 points] Do both of the following
(a) Around the point $(1,0)$, is $f(x, y)=x^{2}(y+1)$ more sensitive to changes in x or to changes in y ? Why?
i. Hint: At the point $(x, y), d f=2 x(y+1) d x+x^{2} d y$ so at the point $(1,0), d f=2 d x+1 d y$
(b) What ratio of $d x$ to $d y$ will make $d f$ equal 0 at $(1,0)$?
i. Hint: Set $d f=0$ in the last equation above and solve for $\frac{d x}{d y}$
6. [15 points] Do one (1) of the following
(a) Suppose $\vec{r}(t)$ is a vector-valued function with the property that for every t in the domain of \vec{r}, $\|\vec{r}(t)\|=4$.
Express $\|\vec{r}(t)\|^{2}$ as a dot product and take the derivative of the result to show that for every t in the domain, $\vec{r}(t)$ is orthogonal to it's derivative $\vec{r}^{\prime}(t)$.
i. Hint: Use the product rule for dot products to take the derivative of both sides of $\vec{r}(t) \cdot \vec{r}(t)=$ 16.
(b) If \mathbf{u}_{1} and \mathbf{u}_{2} are orthogonal unit vectors and $\mathbf{v}=a \mathbf{u}_{1}+b \mathbf{u}_{2}$, show that $\mathbf{v}=\left(\mathbf{v} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}$.
i. Hint: Since \mathbf{u}_{1} and \mathbf{u}_{2} are orthogonal unit vectors, $\mathbf{v} \cdot \mathbf{u}_{1}=\left(a \mathbf{u}_{1}+b \mathbf{u}_{2}\right) \cdot \mathbf{u}_{1}=a\left(\mathbf{u}_{1} \cdot \mathbf{u}_{1}\right)+$ $b\left(\mathbf{u}_{2} \cdot \mathbf{u}_{1}\right)=a(1)+b(0)=a$
7. [8,7 points] If $\mathbf{a}=\langle 1,4\rangle$ and $\mathbf{b}=\langle 2,-3\rangle$
(a) Compute the vector projection, $\mathbf{c}=\operatorname{proj}_{\mathbf{b}} \mathbf{a}$, of \mathbf{a} onto \mathbf{b}.
i. Hint: $\mathbf{c}=\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|} \frac{\mathbf{b}}{\| \mathbf{b}}$
(b) Show that \mathbf{b} is orthogonal to $\mathbf{a}-\mathbf{c}$ by using the dot product.
i. Hint: Use the \mathbf{c} above to compute $\mathbf{a}-\mathbf{c}$ and then the dot product $(\mathbf{a}-\mathbf{c}) \cdot \mathbf{b}$

