Basic Logic

Handout 00

Set Basics

- Notation for standard sets of numbers: C,R,Q,Z,N
- Standard operators on sets: $\in, \cup, \cap, \subseteq, \notin$
- "Set Builder" notation: \{Universal set | defining restriction $\}$

1. Example: The set of even integers: $\{n \in \mathbf{Z} \mid n=2 k$ and $k \in \mathbf{Z}\}$
2. Example: The set of Real-valued functions whose domain is the set of Real numbers and whose graph passes through the point $(2,5):\{f: \mathbf{R} \longrightarrow \mathbf{R} \mid f(2)=5\}$.

Logical Operators and their Truth Tables

- p, q, r, etc represent mathematical statements that are either True or False but not both.

1. Not: (negation): ${ }^{\sim}$ is defined by

p	$\sim p$
T	F
F	T

2. And (Conjunction): \wedge is defined by

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

3. Or: (Disjunction): \vee is defined by

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

4. Conditional (Implication): \Longrightarrow is defined by

p	q	$p \Longrightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

5. Equivalence (If and only if): $\Longleftrightarrow \quad(\equiv)$ is defined by

p	q	$p \Longleftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Tautologies

1. $p \vee \sim p$
2. $\sim \sim p \Longleftrightarrow p$
3. $(P \wedge(P \Rightarrow Q)) \Rightarrow Q$
4. $(p \vee q) \Longleftrightarrow(\sim p) \wedge(\sim q)$
5. $(p \wedge q) \Longleftrightarrow\left({ }^{\sim} p\right) \vee\left({ }^{\sim} q\right)$
6. $(p \Longrightarrow q) \Longleftrightarrow(\sim q) \Longrightarrow(\sim p) \quad$ contrapositive
7. $(p \Longrightarrow q) \Longleftrightarrow(\sim p) \vee q$
8. $(P \Rightarrow Q) \Longleftrightarrow\left((P \wedge \sim Q) \Rightarrow\left(R \wedge^{\sim} R\right)\right)$
9. $((p \Longrightarrow q) \Longrightarrow(r \Longrightarrow s)) \Longleftrightarrow((p \Longrightarrow q) \wedge r) \Longrightarrow s$

Contradictions

1. $p \wedge \sim p$

Quantifiers

Universal: \forall Example: $\forall x \in \mathbf{R} \quad x^{2}+1>0$ is a true statement
Existential: \exists Example: There is an integer solution to $x^{2}+5 x+6=0$ is a true statement. ($x=-2$)

Negation of quantifiers ${ }^{\sim} \exists x(p(x))$ means $\forall x^{\sim} p(x)$

Proof Methods

Direct Proof of $H \Longrightarrow C$ or $H \Longrightarrow C_{1} \wedge C_{2}$

1. Start with the (conjoined) hypotheses of H
2. Use nothing but logical steps See below.
3. Deduce C. (Deduce each of the C_{i})
