Basic Logic

Set Basics

- Notation for standard sets of numbers: C, R, Q, Z, N
- Standard operators on sets: $\in, \cup, \cap, \subseteq, \notin$
- "Set Builder" notation: {Universal set | defining restriction}
 - 1. Example: The set of even integers: $\{n \in \mathbb{Z} \mid n = 2k \text{ and } k \in \mathbb{Z}\}$
 - 2. Example: The set of Real-valued functions whose domain is the set of Real numbers and whose graph passes through the point (2,5): $\{f : \mathbb{R} \longrightarrow \mathbb{R} \mid f(2) = 5\}$.

Logical Operators and their Truth Tables

• p, q, r, etc represent mathematical statements that are either True or False but not both.

1. Not: (negation): $$ is defined by $\begin{array}{c c} p & p \\ \hline T & F \\ \hline F & T \end{array}$
2. And (Conjunction): \wedge is defined by $\begin{array}{c c} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ \hline F & T & F \\ \hline F & F & F \end{array}$
3. Or: (Disjunction): \lor is defined by $\begin{array}{c c} p & q & p \lor q \\ \hline T & T & T \\ \hline T & F & T \\ \hline F & T & T \\ \hline F & F & F \end{array}$
p q
4. Conditional (Implication): \implies is defined by $\begin{bmatrix} T & T \\ T & F \end{bmatrix}$
1. Conditional (implication). — is defined by 1 T

ł

p	q	$p \Longrightarrow q$	
Т	Т	Т	
Т	F	F	
F	Т	Т	
F	F	Т	

pq $p \Longleftrightarrow q$

Т Т Т 5. Equivalence (If and only if): \iff (\equiv) is defined by F F Τ Т F F F F Т

Tautologies

1.
$$p \lor \sim p$$

2. $\sim \sim p \iff p$
3. $(P \land (P \Rightarrow Q)) \Rightarrow Q$
4. $(p \lor q) \iff (\sim p) \land (\sim q)$
5. $(p \land q) \iff (\ p) \lor (\ q)$
6. $(p \Longrightarrow q) \iff (\ p) \lor (\ q)$ contrapositive
7. $(p \Longrightarrow q) \iff (\sim p) \lor q$
8. $(P \Rightarrow Q) \iff ((P \land \ Q) \Rightarrow (R \land \ R))$
9. $((p \Longrightarrow q) \implies (r \Longrightarrow s)) \iff ((p \Longrightarrow q) \land r) \Longrightarrow s$

Contradictions

1.
$$p \wedge \sim p$$

Quantifiers

Universal: \forall **Example:** $\forall x \in \mathbf{R}$ $x^2 + 1 > 0$ is a true statement

Existential: \exists **Example:** There is an integer solution to $x^2 + 5x + 6 = 0$ is a true statement. (x = -2)

Negation of quantifiers $\exists x (p(x)) \text{ means } \forall x \ p(x)$

Proof Methods

Direct Proof of $H \Longrightarrow C$ **or** $H \Longrightarrow C_1 \wedge C_2$

- 1. Start with the (conjoined) hypotheses of H
- 2. Use nothing but logical steps See below.
- 3. Deduce C. (Deduce each of the C_i)