November 23, 2010

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.** "A life spent making mistakes is not only more honorable, but more useful than a life spent doing nothing." - George Bernard Shaw

You may submit at most four (4) of these problems.

- 1. Do both of the following.
 - (a) Show that the multiplicative group of *n*th roots of unity is isomorphic to \mathbf{Z}_n .
 - (b) Let $G = \mathbb{R} \setminus \{-1\}$ and define a binary operation on G by a * b = a + b + ab. Prove that G is a group under this operation. Also show that G is isomorphic to the multiplicative group of nonzero real numbers.
- 2. Prove that D_4 cannot be isomorphic to the internal direct product of two of its proper subgroups.
- 3. Prove that $S_3 \times \mathbb{Z}_2$ is isomorphic to D_6 . Make a conjecture about D_n and prove your conjecture.
- 4. Do both of the following.
 - (a) Prove or disprove. Every abelian group of order divisible by 3 contains a subgroup of order 3.
 - (b) Prove or disprove. Every nonabelian group of order divisible by 6 contains a subgroup of order 6.
- 5. Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5, respectively and hk = kh for every $h \in H$ and $k \in K$, prove that G is the internal direct product of H and K.
 - (a) Do two of the following. Prove or disprove. Let G, H, K be groups. If $G \times H \cong G \times K$, then $H \cong K$.
 - (b) Prove or disprove. There is a noncyclic abelian group of order 51.
 - (c) Prove or disprove. There is a noncyclic abelian group of order 52.
- 6. Do either of the following.
 - (a) Prove that S_n is isomorphic to a subgroup of A_{n+2} .
 - (b) Prove that D_n is isomorphic to a subgroup of S_n .
- 7. Recall that if X is any set then the set of all permutations $\pi : X \to X$ is a group S_X under function composition. Recall also that if G is a group then the set Aut(G) of all automorphisms of G is a subgroup of S_G .
 - (a) Find $Aut(\mathbf{Z}_6)$
 - (b) Find $Aut(\mathbf{Z})$

- 8. Recall that if G is a group and if $g \in G$ then the map ϕ_g defined by $\phi_g(x) = gxg^{-1}$ is an automorphism of G. We call the set of all such conjucation maps the set of **inner** automorphism of G, $Inn(G) = \{\phi_g : \phi_g(x) = gxg^{-1} \text{ for all } x \in G\}.$
 - (a) Find two nonisomorphic groups H and G for which $Aut(G) \cong Aut(H)$
 - (b) Prove that Inn(G) is a subgroup of Aut(G).
- 9. Do **one** of the following.
 - (a) Let n_1, \dots, n_k be positive integers. Show that

$$\prod_{i=1}^k \mathbf{Z}_{n_i} \cong \mathbf{Z}_{n_1 \cdots n_k}$$

if and only if $gcd(n_i, n_j) = 1$ for $i \neq j$.

(b) If G is the internal direct product of H_1, \dots, H_n , prove that G is isomorphic to

$$\prod_{i=1}^{n} H_i$$