Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"The one real object of education is to have a man in the condition of continually asking questions." -Bishop Mandell Creighton

Problems

1. Do both of the following.
(a) Let (G, \cdot) be a group, with multiplicative notation. Define an opposite group (G, \circ) with law of composition $a \circ b$ as follows: The underlying set is the same as for (G, \cdot), but the law of composition is the opposite; that is, define $a \circ b=b \cdot a$. Prove that this defines a group.
(b) Prove that in any group G and for any elements $a, b \in G$, the orders of $a b$ and $b a$ are the same. That is, prove that the cyclic subgroups $\langle a b\rangle$ and $\langle b a\rangle$ have the same number of distinct elements.
2. Do both of the following:
(a) Prove that if G is a group with the property that the square of every element is the identity, then G is abelian.
(b) Let G be a finite group. Show that the number of elements x of G such that $x^{3}=e$ is odd. Show that the number of elements x of G for which $x^{2} \neq e$ is even.
3. Do any two of the following
(a) Prove that every subgroup of a cyclic group is cyclic.
(b) Describe all groups G that contain no proper subgroups.
(c) Let $G=\langle x\rangle$ be a cyclic group of order n and let r be an integer dividing n. Say, $n=r s$. Prove that G contains exactly one subgroup of order r.
