Fall 2010

## October 17

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.** *"The one real object of education is to have a man in the condition of continually asking questions."* -Bishop Mandell Creighton

## Problems

- 1. Do **both** of the following.
  - (a) Let  $(G, \cdot)$  be a group, with multiplicative notation. Define an **opposite group**  $(G, \circ)$  with law of composition  $a \circ b$  as follows: The underlying set is the same as for  $(G, \cdot)$ , but the law of composition is the opposite; that is, define  $a \circ b = b \cdot a$ . Prove that this defines a group.
  - (b) Prove that in any group G and for any elements  $a, b \in G$ , the orders of ab and ba are the same. That is, prove that the cyclic subgroups  $\langle ab \rangle$  and  $\langle ba \rangle$  have the same number of distinct elements.
- 2. Do both of the following:
  - (a) Prove that if G is a group with the property that the square of every element is the identity, then G is abelian.
  - (b) Let G be a finite group. Show that the number of elements x of G such that  $x^3 = e$  is odd. Show that the number of elements x of G for which  $x^2 \neq e$  is even.
- 3. Do any two of the following
  - (a) Prove that every subgroup of a cyclic group is cyclic.
  - (b) Describe all groups G that contain no proper subgroups.
  - (c) Let  $G = \langle x \rangle$  be a cyclic group of order n and let r be an integer dividing n.Say, n = rs. Prove that G contains exactly one subgroup of order r.