Due September 24

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology.
Only write on one side of each page.
"Simple solutions seldom are. It takes a very unusual mind to undertake analysis of the obvious." - Alfred North Whitehead

Problems

1. You must do this problem. Do two of the following.
(a) Prove the Leibiz rule for $f^{(n)}(x)$ where $f^{(n)}(x)$ is the nth derivative of f; that is, show that for every positive integer n

$$
(f g)^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)
$$

(b) Let X be a set and $\mathcal{P}(X)=\{A: A \subset X\}$ the power set of X (the set of all subsets of X). Prove that for every positive integer n, any set with exactly n elements has a power set with 2^{n} elements.
(c) Use induction to compute the determinant of $A=\left[\begin{array}{llllll}2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & & \ddots & & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2\end{array}\right]$. (All other entries in this tridiagonal matrix are zero.)
2. Prove that the First Principle of Mathematical Induction implies the Second Principle of Mathematical Induction. [You may use anything we already know about induction.]
3. Let $P(A)$ be the power set of the set A.That is, $P(A)$ is the set of all subsets of A. Show that for any set (including infinite sets) A it is not the case that A is in one-to-one correspondence with $P(A)$. [Hint: the infinite case is much more interesting than the finite case and the method of proof indicated in this hint will work for both. Let $\phi: A \rightarrow P(A)$ be any one-to-one function and show it cannot be onto by considering the subset of A consisting of all elements a that are not in their image, $\phi(a)$.]
4. The textbook's statement of the First Principle of Mathematical Induction uses $n_{0}>0$ as a base case. Prove that the specical case of this that we proved in class (i.e., the case where $n_{0}=1$) implies the more general case given in the book.

