Proof D-1

Accepted

Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Thursday, Nov 18.
- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric in the course information sheet.
- Retry: Only use material from the relevant section of the text or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race." - Alfred North Whitehead

D-1 (Section PDM)

Definition 1 If A is an $n \times p$ matrix and \vec{b} is a vector in \mathbf{C}^{n} then the matrix M_{k} is the matrix obtained by replacing the kth column of A with the vector \vec{b}

Prove the following theorem.
Theorem 1 If A is a nonsingular matrix of size n then the unique solution to the system of equations $A \vec{x}=\vec{b}$ is the vector \vec{x} whose k th component is $[\vec{x}]_{k}=\frac{\operatorname{det}\left(M_{k}\right)}{\operatorname{det}(A)}$

Hint: Consider the matrix X_{k} obtained by replacing the k th column of the identity matrix with the vector \vec{x}.

