October 7, 2010
write on one side of each page.
Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. [10, 10, 10 points] Evaluate the following integrals. Show all of your work.
2. $\int \cos ^{5}(3 x) d x=\int\left[\cos ^{2}(3 x)\right]^{2} \cos (3 x) d x=\frac{1}{3} \int\left(1-\sin ^{2}(3 x)\right)^{2} d(\sin 3 x)=\frac{1}{3} \int\left(1-2 u^{2}+u^{4}\right) d u=$ $\frac{1}{3} u-\frac{2}{9} u^{3}+\frac{1}{15} u^{5}+C$. Now backsubstitute $u=\sin (3 x)$.
3. $\int \sec ^{4}(2 x) d x=\int\left[\sec ^{2}(2 x)\right] \sec ^{2}(2 x) d x=\frac{1}{2} \int\left(1+\tan ^{2} 2 x\right) d(\tan 2 x)=\frac{1}{2} \int\left(1+u^{2}\right) d u=$ $\frac{1}{6} u^{3}+\frac{1}{2} u+C$. Now backsubstitute $u=\tan (2 x)$.
4. $\int y \ln (y) d y=\frac{1}{2} y^{2} \ln (y)-\int \frac{1}{2} y^{2} \frac{1}{y} d y=\frac{1}{2} y^{2} \ln (y)-\int \frac{1}{2} y d y=\frac{1}{2} y^{2} \ln y-\frac{1}{4} y^{2}+C$
(a) Where we used integration by parts and $u=\ln (y), d v=y, d u=\frac{1}{y} d y, v=\frac{1}{2} y^{2}$ we
5. [15 points] Find the length of the curve $y=x^{1 / 2}-(1 / 3) x^{3 / 2}, 1 \leq x \leq 4$.
6. Set $x=t$ and $y=t^{1 / 2}-(1 / 3) t^{3 / 2}$, then $\left[\frac{d x}{d t}\right]^{2}=[1]^{2}=1$ and $\left[\frac{d y}{d t}\right]^{2}=\left[\frac{1}{2} x^{-1 / 2}-\frac{1}{2} x^{1 / 2}\right]^{2}=$ $\frac{1}{4} x^{-1}-\frac{1}{2}+\frac{1}{4} x$
7. So

$$
\begin{aligned}
d s & =\sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}} d t=\sqrt{1+\left(\frac{1}{4} x^{-1}-\frac{1}{2}+\frac{1}{4} x\right)} d t \\
& =\sqrt{\frac{1}{4} x^{-1}+\frac{1}{2}+\frac{1}{4} x d t}=\sqrt{\left(\left[\frac{1}{2} x^{-1 / 2}+\frac{1}{2} x^{1 / 2}\right]^{2}\right)} d t=\left|\frac{1}{2} x^{-1 / 2}+\frac{1}{2} x^{1 / 2}\right| d t
\end{aligned}
$$

3. So $\left.s=\int_{1}^{4}\left|\frac{1}{2} x^{-1 / 2}+\frac{1}{2} x^{1 / 2}\right| d t=\int\left(\frac{1}{2} x^{-1 / 2}+\frac{1}{2} x^{1 / 2}\right) d t=x^{1 / 2}+\frac{1}{3} x^{3 / 2}\right]_{1}^{4}=\frac{10}{3}$
4. [15 points] Find the area of the surface generated by revolving the curve $y=\sqrt{4 x-x^{2}}, 1 \leq x \leq 2$ about the x-axis.
5. Set $x=t$ and $y=\left(4 t-t^{2}\right)^{1 / 2}$ so that

$$
\begin{aligned}
{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2} } & =1+\left[\frac{\frac{1}{2}(4-2 t)}{\sqrt{4 t-t^{2}}}\right]^{2}=1+\frac{(2-t)^{2}}{4 t-t^{2}} \\
& =\frac{4 t-t^{2}+(2-t)^{2}}{4 t-t^{2}}=\frac{4}{4 t-t^{2}}
\end{aligned}
$$

2. So, the surface area is $2 \pi \int_{1}^{2}($ radius $) d s=2 \pi \int_{1}^{2} \sqrt{4 t-t^{2}} \sqrt{\frac{4}{4 t-t^{2}}} d t=2 \pi \int_{1}^{2} 2 d t=4 \pi$.
3. [15 points] Solve the initial value problem $\frac{d y}{d x}=\frac{y \ln (y)}{1+x^{2}}, y(0)=e^{2}$.
4. Separate variables to obtain $\int \frac{1}{y \ln (y)} \frac{d y}{d x} d x=\int \frac{1}{1+x^{2}} d x$ and use the substitution $u=\ln (y)$, $d u=\frac{1}{y} d y$ on the left integral.
5. $\int \frac{1}{u} d u=\ln |u|+C_{1}=\ln |\ln y|+C_{1}=\arctan (x)+C_{2}$. Setting $C=C_{2}-C_{1}$ we get
6. $\ln |\ln y|=\arctan (x)+C$ and the initial condition tells us that $\ln \left|\ln \left(e^{2}\right)\right|=\arctan (0)+C$ so $C=\ln \left(\ln \left(e^{2}\right)\right)=\ln (2)$
7. So $\ln |\ln y|=\arctan (x)+\ln (2)$ which implies

$$
\begin{aligned}
\ln y & =e^{\arctan (x)+\ln (2)}=e^{a \arctan (x)} \cdot e^{\ln (2)} \\
& =2 e^{\arctan (x)} \\
\text { So, } y & =e^{2 e^{\arctan (x)}}
\end{aligned}
$$

6. [10 points each] A deep dish-apple pie, whose internal temperature was $220^{\circ} \mathrm{F}$ when removed from the oven was set out on a breezy $40^{\circ} \mathrm{F}$ porch to cool. Fifteen minutes later, the pie's internal temperature was $180^{\circ} \mathrm{F}$. How much longer did it take for the pie to cool to $70^{\circ} \mathrm{F}$?
7. Using $T(t)-A=\left(T_{0}-A\right) e^{-k t}$ with $A=40$ and $T_{0}=220$ and $T(15)=180$ we get

$$
\begin{aligned}
180-40 & =(220-40) e^{-k(15)} \\
\frac{\ln \left(\frac{7}{9}\right)}{-15} & =k
\end{aligned}
$$

2. Then using this k and solving for t in

$$
\begin{aligned}
70-40 & =(220-40) e^{-k t} \\
\ln \left(\frac{1}{6}\right) & =-k t \\
t & =-\ln \left(\frac{1}{6}\right) / \frac{\ln \left(\frac{7}{9}\right)}{-15} \\
& \approx 106.9 \text { minutes }
\end{aligned}
$$

3. The answer is $106.9-15=91.9$ minutes.
4. [15 points] A disk of radius 2 is revolved around the y-axis to form a solid sphere. A round hole of radius $\sqrt{3}$, centered on the y-axis is bored through the sphere. Find the volume of material removed from the sphere.
5. Using cylindrical shells we see the volume removed from the sphere is $2 \pi \int_{0}^{\sqrt{3}} x \sqrt{4-x^{2}} d x$ which we can integrate using $u=4-x^{2}, d u=-2 x d x$. The removed volume is $2 \pi \int_{0}^{\sqrt{3}} x \sqrt{4-x^{2}} d x=$ $\frac{14}{3} \pi$

Extra Credit [5 points] At each point on the curve $y=2 \sqrt{x}$, a line segment of length $h=y$ is drawn perpendicular to the $x y$-plane. Set up an integral that equals the area of the surface formed by these perpendiculars from $x=0$ to $x=3$. [Note that this is not a surface of revolution so none of the formulas in Chapter 6 apply. Develop your own integral by using Riemann sums to estimate the area of the surface.]

1. The surface extends vertically upward from the curve $y=2 \sqrt{x}$. If we partition the graph of $y=2 \sqrt{x}$ into many small arcs of length approximately Δs_{k}, then the area of the surface above the k th arc is approximately $2 \sqrt{x_{k}} \Delta s_{k}$. Thus the associated Riemann sum that approximates
the total area is $\sum_{k=1}^{n} 2 \sqrt{x_{k}} \Delta s_{k}$ and since $f(x)=2 \sqrt{x}$ is a smooth curve on the given domain we know that the limit of Riemann sums exists and is equal to the integral $\int_{0}^{3} 2 \sqrt{x} d s$. To compute this actual area, we need to compute $d s=\sqrt{1+x^{-1}} d x=\frac{x^{1 / 2}}{\sqrt{x+1}}$ so the integral is

$$
\int_{0}^{3} 2 x^{1 / 2} \cdot \frac{x^{1 / 2}}{(x+1)^{1 / 2}} d x=2 \int_{0}^{3} \frac{x}{(x+1)^{1 / 2}} d x
$$

which, when integrated by using the "Rule of Thumb" substitution $u=x+1$, yields a value of $\frac{16}{3}$.

