Proof E and D-1

Accepted

Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Thursday, November 19.
- *** You may discuss this problem with others but may not discuss how to write it up or show others your written work.
- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric.
(http://math.ups.edu/~bryans/Current/Fall_2008/290inf_Fall2008.html\#tth_sEc5.1)
- Retry: Only use material from the relevant section or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"Personally, I'm always ready to learn, although I do not always like being taught." - Winston Churchill
E and D-1 (You may use material up through Section SD)

1. Suppose A is a square matrix where $A^{4}=O$. That is, A^{4} is the zero matrix.
(a) Prove that zero is the only eigenvalue of A.
(b) Give an example of a 4×4 matrix A where $A^{4}=O$ but $A^{3} \neq O$.
2. Suppose B is a nonsingular matrix for which $B^{*}=B^{-1}$.
(a) Prove that $\operatorname{det}(B)$ must be a complex number of modulus 1 .
