Proof M-2

Accepted

Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Thursday, October 29.
- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric.
(http://math.ups.edu/ bryans/Current/Fall_2009/290inf_Fall2009.html\#tth_sEc5.1)
- Retry: Only use material from the relevant section or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"True eloquence consists in saying all that is necessary, and nothing but what is necessary." - La Rochefoucauld

M-2 (Section FS)

Definition: If A is a square matrix of size m then we define $A^{0}=I_{m}, A^{1}=A$, and $A^{n+1}=A^{n}$ for each $n \geq 1$.If A is nonsingular then we define $A^{-n}=\left(A^{-1}\right)^{n}$.

1. Suppose A and B are square matrices of size m and that A is non-singular. Use the principle of mathematical induction to prove that $\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A$ for every positive integer n.
2. Now suppose that B is also nonsingular and extend the previous result by proving the formula $\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A$ holds for every integer (positive, negative and zero).
3. Use your formula and the matrices $B=\left[\begin{array}{cc}\frac{1}{2} & \frac{3}{4} \\ \frac{1}{2} & \frac{1}{4}\end{array}\right]$ and $A=\left[\begin{array}{cc}3 & 1 \\ 2 & -1\end{array}\right]$ and the vector $\vec{x}_{0}=\left[\begin{array}{l}100 \\ 200\end{array}\right]$ to compute $B^{n} \vec{x}_{0}$. What is the component by component limit of $B^{n} \vec{x}_{0}$ as $n \rightarrow \infty$?

Notes:

- In part $3, A^{-1} B A$ should simplify to be a diagonal matrix.
- Recall the formula for powers of diagonal matrices (proven in class) and use it to compute B^{n}.

