Accepted

Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Thursday, September 24
- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric in the course information sheet.
- Retry: Only use material from the relevant section or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"It is by logic that we prove but by intuition that we discover." (Henri Poincaré)
SLE-2 (Section HSE) Let A be an $m \times n$ matrix and $L S(A, \overrightarrow{0})$ be the corresponding homogeneous linear system of equations. Let \vec{b} be a constant vector for which the system of linear equations $L S(A, \vec{b})$ has a non-empty solution set S with the specific vector $\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right]$ as one element of S. Finally, let $N(A)$ denote the null space of the matrix A.
Prove that $S=T$, where $T=\left\{\left[\begin{array}{c}a_{1}+\beta_{1} \\ a_{2}+\beta_{2} \\ \vdots \\ a_{n}+\beta_{n}\end{array}\right] \in \mathbf{C}^{n}:\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right] \in N(A)\right\}$.

