Proof M-1

Accepted

Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Thursday, October 23.
- Turn in the the final version of your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- Follow the Writing Guidelines of the Grading Rubric.
(http://math.ups.edu/~bryans/Current/Fall_2008/290inf_Fall2008.html\#tth_sEc5.1)
- Retry: Only use material from the relevant section or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"Often you must turn your stylus to erase, if you hope to write anything worth a second reading". -Horace, poet and satirist (65-8 BCE)

M-1 (Section MISLE)

1. Given an $m \times n$ matrix A and an $n \times m$ matrix B where $m>n$, prove that it is impossible to have the product $A B=I_{m}$.
2. Show that the order of multiplication is important by finding a specific 6×4 matrix A and a specific 4×6 matrix B where $B A=I_{4}$.
3. For bonus points, generalize your answer in part 2. That is, prove that for any positive integers m and n with $m>n$, then there is an $m \times n$ matrix A and an $n \times m$ matrix B with $B A=I_{n}$.

Notes:

- These matrices are not square so don't use results that require square matrices.
- One way to approach part 1 is to think about null spaces.
- For parts 2 and 3 , consider $\left[\begin{array}{ll}2 & 0\end{array}\right]\left[\begin{array}{c}\frac{1}{2} \\ 0\end{array}\right]=[1]=I_{1}$

