September 18, 2008

Technology used:
Only write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. [10 points] Do one (1) of the following.
2. A point P in the first quadrant lies on the graph of the function $f(x)=\sqrt[3]{x}$. Express the x-coordinate of P as a function of the slope of the line joining P to the origin.
Solution: The slope from the point $P(x, \sqrt[3]{x})$ to the origin is $m=\frac{\sqrt[3]{x}-0}{x-0}=\frac{1}{x^{2 / 3}}=x^{-2 / 3}$. This means that $x=\left(x^{-2 / 3}\right)^{-3 / 2}=m^{-3 / 2}$.Thus $x=f(m)=m^{-3 / 2}$.
3. If a composite $f \circ g$ is one-to-one, must g be one-to-one? Explain your answer.

Solution: Suppose that g is not one-to-one. Then there are numbers x_{1}, x_{2} with $x_{1} \neq x_{2}$ for which $g\left(x_{1}\right)=g\left(x_{2}\right)$.Thus, $(f \circ g)\left(x_{1}\right)=f\left(g\left(x_{1}\right)\right)=f\left(g\left(x_{2}\right)\right)=(f \circ g)\left(x_{2}\right)$. But this can't happen because we are told that $f \circ g$ is one-to-one. We can therefor deduce that g can't be one-to-one.
2. [15 points] Rewrite the following sum as indicated.

Solution: We make the change of index $j=k+11$ which tells us that $k=j-11$ then filling in the missing information we get

$$
\begin{aligned}
\sum_{k=4}^{101}(2 k-1)^{2} & =\sum_{j=15}^{101+11}(2(j-11)-1)^{2} \\
& =\sum_{j=15}^{112}(2 j-23)^{2}
\end{aligned}
$$

3. [15 points] Do one (1) of the following. Show your work.
4. Evaluate $\int \frac{1}{t^{3}}\left(t^{2}-3 t^{5}+t^{1 / 2}+5 t^{3} \sec ^{2}(t)+6 t^{3} \sec (t) \tan (t)+\frac{t^{3}}{\sqrt{1-t^{2}}}\right) d t$

Solution: Multiplying through by $\frac{1}{t^{3}}$ and using stardard antiderivative formulas, we get
$\int\left(\frac{1}{t}-3 t^{2}+t^{-5 / 2}+5 \sec ^{2}(t)+6 \sec (t) \tan (t)+\frac{1}{\sqrt{1-t^{2}}}\right) d t=\ln |t|-t^{3}+\frac{t^{-3 / 2}}{-3 / 2}+5 \tan (t)+$ $6 \sec (t)+\arcsin (t)+C$
2. By differentiating the right hand side, verify the formula $\int \frac{\arctan (x)}{x^{2}} d x=\ln (x)-\frac{1}{2} \ln \left(1+x^{2}\right)-$ $\frac{\arctan (x)}{x}+C$
Solution: $\frac{d}{d x}\left[\ln (x)-\frac{1}{2} \ln \left(1+x^{2}\right)-\frac{\arctan (x)}{x}+C\right]=\frac{1}{x}-\frac{1}{2} \frac{1}{1+x^{2}}(2 x)-\frac{\frac{1}{1+x^{2}}(x)-(1) \arctan (x)}{x^{2}}=$ $\frac{x^{2}+1}{x\left(x^{2}+1\right)}-\frac{x^{2}}{x\left(x^{2}+1\right)}-\frac{1}{x\left(x^{2}+1\right)}+\frac{\arctan (x)}{x^{2}}=0+\frac{\arctan (x)}{x^{2}}$.
4. [8, 7 points] The following is a Riemann sum for a function f with domain an interval $[a, b]$. [Do NOT simplify this sum.]

$$
\sum_{k=1}^{n}\left[3\left(5+\frac{6 k}{n}\right)^{7}-\left(5+\frac{6 k}{n}\right)^{2}+6\right] \frac{6}{n}
$$

1. What is this specific $f(x)$?
2. What is the specific interval $[a, b]$?

Solution: This Riemann sum has the form $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x$ which tells us that $\Delta x=\frac{6}{n}$ so we know that whatever $[a, b]$ is, we must have $b-a=6$. We also see that the $\frac{6 k}{n}$ terms look like $k \Delta x$ so we deduce that $c_{k}=5+k \Delta x=5+\frac{6 k}{n}$.this also tells us that our partition starts at $a=5$ and contains $5+1 \Delta x, 5+2 \Delta x$, etc. Thus we have $f(x)=3 x^{7}-x^{2}+6$ with $[a, b]=[5.11]$. An equally valid answer is $f(x)=3(5+x)^{7}-(5+x)^{2}+6$ where the interval is [0,6].
5. [15 points] Find the derivative of $G(x)=\int_{x^{4}}^{x} e^{t^{2}} d t$ using part 1 of the Fundamental Theorem of Calculus.
Solution: $G(x)=\int_{x^{4}}^{0} e^{t^{2}} d t+\int_{0}^{x} e^{t^{2}} d t=-\int_{0}^{x^{4}} e^{t^{2}} d t+\int_{0}^{x} e^{t^{2}} d t=-F\left(x^{4}\right)+F(x)$ where $F(x)=$ $\int_{0}^{x} e^{t^{2}} d t$ then the Fundamental Theorem of Calculus, Part 1 tells us that $F^{\prime}(x)=e^{x^{2}}$.Now, using the Chain Rule, we have: $G^{\prime}(x)=-F^{\prime}\left(x^{4}\right) 4 x^{3}+F^{\prime}(x)=-4 x^{3} e^{x^{8}}+e^{x^{2}}$.
6. [15 points each] Do both of the following.

1. Evaluate $\int(2 t+1+2 \cos (2 t+1)) d t=t^{2}+1+\sin (2 t+1)+C$.

Solution: $\int(2 t+1+2 \cos (2 t+1)) d t=\int(2 t+1) d t+\int 2 \cos (2 t+1) d t=t^{t}+t+\int 2 \cos (2 t+1) d t$.
Using the substitution $u=2 t+1, d u=2 d t$ on this last integral we get $\int 2 \cos (2 t+1) d t=$ $\int \cos (u) d u=\sin (u)+C=\sin (2 t+1)+C$.
2. Evaluate $\int \frac{(\ln (x+1))^{2}}{x+1} d x=\frac{(\ln (x+1))^{2}}{3}+C$

Solution: Using the substitution $u=\ln (x+1)$ we get $d u=\frac{1}{x+1} d x$ so that $\int \frac{(\ln (x+1))^{2}}{x+1} d x=$ $\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{(\ln (x+1))^{2}}{3}+C$.

