Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.

Due September 28

1. Prove the following Theorem.

Let P be a permutation matrix associated with the permutation $p: S \rightarrow S$ where $S=\{1,2,3, \cdots, n\}$. Then
(a) The j th column of P is $\vec{e}_{p(j)}$
(b) P is the sum of n matrix units: $P=\vec{e}_{p(1), 1}+\vec{e}_{p(2), 2}+\vec{e}_{p(3), 3}+\cdots+\vec{e}_{p(n), n}$
(c) Every row and every column of P has a single 1 and all other entries 0 .
(d) Any matrix that satisfies property c. above is a permutation matrix.

