Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"A life spent making mistakes is not only more honorable, but more useful than a life spent doing nothing." - George Bernard Shaw

Problems

1. Do both of the following:
(a) Prove that O is not a normal subgroup of M.
(b) Let $S M$ denote the subset of orientation-preserving motions of the plane. Prove $S M$ is a normal subgroup of M and determine its index in M.
2. For those of you who know a bit of complex variables.
(a) Write the formulas for the motions t_{a}, ρ_{θ} and r in terms of the complex variables $z=x+i y$.
(b) Show every motion has the form $m(z)=\alpha z+\beta$ or $m(z)=\alpha \bar{z}+\beta$, where α, β are complex numbers with $|\alpha|=1$.
(c) Find an isomorphism from the group $S M$ to the subgroup of $G L(2, \mathbf{C})$ of matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right]$ with $|a|=1$.
3. With each of the patterns shown on the sheet of figures labelled "Problem 8.3", find a pattern with the same type of symmetry as those on the accompanying handout (the page numbered 173).
4. Given the subgroup $H=\left\{1, x^{5}\right\}$ of the dihedral group D_{10}.
(a) Explicitly compute the cosets of H in D_{10}.
(b) Prove that D_{10} / H is isomorphic to D_{5}.
(c) Is D_{10} isomorphic to $D_{5} \times H$?
5. List all symmetries of the following figures (found on the last page of the extra-reading handout on Linear Algebra: Orthogonal Matrices and Translations.
(a) Figure 1.4
(b) Figure 1.5
(c) Figure 1.6
(d) Figure 1.7
6. Prove every finite subgroup of M is a conjugate subgroup of one of the standard subgroups listed in the corollary to the Classification of Finite Symmetry Groups Theorem stated below.
(a) Corollary 1 Let G be a finite subgroup of the group of motions M. If coordinates are introducted suitably, then G becomes one of the groups C_{n} or D_{n}, where C_{n} is generated by ρ_{θ}, $\theta=2 \pi / n$ and D_{n} is generated by ρ_{θ} and r.
7. Find all proper normal subgroups N and identify the corresponding quotient groups D_{k} / N of the groups D_{13} and D_{15}.
8. Let G be a subgroup of M that contains rotations about two different points. Prove algebraically that G contains a translation.
9. Prove the group of symmetries of the frieze pattern
...EEEEEEEE...
is isomorphic to the direct product $C_{2} \times C_{\infty}$ of a cyclic group of order 2 and an infinite cyclic group.
10. Let G be the group of symmetries of the frieze pattern

$$
\cdots \subset \supset \subset \supset \subset \supset \cdots
$$

(a) Determine the point group \bar{G} of G.
(b) For each element \bar{g} of \bar{G}, and each element g of G which represents \bar{g}, describe the action of g geometrically.
(c) Let H be the subgroup of translations in G. Determine $[G: H]$.
11. Let G be a discrete group in which every element is orientation-preserving. Prove the point group \bar{G} is a cyclic group of rotations and there is a point p in the plane such that the set of group elements which fix p is isomorphic to \bar{G}.
12. Recall that M is the group of rigid motions of the two-dimensional plane. In this problem you investigate the rigid motions of a one-dimensional line.
Let N denote the group of rigid motions of the line $l=\mathbf{R}^{1}$. Some elements of N are

$$
t_{a} \text { where } t_{a}(x)=x+a \text { and } s \text { where } s(x)=-x .
$$

(a) Show that $\left\{t_{a}, t_{a} s: a \in \mathbf{R}^{1}\right\}$ are all of the elements of N, and describe their actions on l geometrically. [Note that $|N|$ is infinite since there is a distinct t_{a} for each real number a.]
(b) Compute the products $t_{a} t_{b}, s t_{a}, s s$.
(c) Find all discrete subgroups of N which contain a translation. It will be convenient to choose your origin and unit length with reference to the particular subgroup. Prove your list is complete.
13. Prove
(a) If the point group of a lattice group G is $\bar{G}=C_{6}$, then $L=L_{G}$ is an equilateral triangular lattice, and G is the group of all rotational symmetries of L about the lattice points.
(b) If the point group of a lattice group G is $\bar{G}=D_{6}$, then $L=L_{G}$ is an equilateral triangular lattice, and G is the group of all symmetries of L.

Figure 1:

Figure 2:

