November 2, 2007

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.**

"By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race." – Alfred North Whitehead

Problems

1. Prove the Correspondence Theorem.

Theorem 1 Let $\phi: G \to G'$ be an onto homomorphism between groups G and G' and with ker $(\phi) = N$. Show the set of subgroups of G', $S = \{H': H' \leq G'\}$ is in one-to-one correspondence with the set $T = \{H: H \leq G \text{ and } N \subset H\}$ of all subgroups of G that contain $N = \text{ker}(\phi)$. I suggest you use the map $\lambda: S \to T$ where λ takes the subgroup H of G to the subgroup $\phi(H)$ of G'. That is, $\lambda(H) = \phi(H)$. Also prove that if H is a normal subgroup of G then $\lambda(H)$ is a normal subgroup of G'.

[It might be useful to explicitly work out the correspondence above in the special case when G is a cyclic group of order 12 generated by x, G' is a cyclic group of order 6 generated by y and ϕ is the map given by $\phi(x^i) = y^i$.

- 2. Do both of the following.
 - (a) Prove the cartesian product of two infinite cyclic groups is not infinite cyclic.
 - (b) Prove the center of the cartesian product of two groups is the cartesian product of their centers.
- 3. Do both of the following.
 - (a) Prove every integer a is congruent to the sum of its digits modulo 9.
 - (b) Prove the associative and commutative laws for multiplication in $\mathbf{Z}/n\mathbf{Z}$.
- 4. Prove the subset $G \times \{e'\}$ of the product group $G \times G'$ is a normal subgroup isomorphic to G. Also prove that

$$\frac{G \times G'}{G \times \{e'\}} \approx G'.$$

- 5. Let G be a finite group whose order is the product of two integers: n = ab. Let H, K be subgroups of G of orders a, b, respectively. Assume that $H \cap K = \{e\}$. Prove that HK = G. Is G isomorphic to $H \times K$?
- 6. Let *H* be a subgroup of a group *G*, and let $\phi : G \to H$ be a homomorphism whose restriction to *H*, $\phi|_H$, is the identity map. Let $N = \ker(\phi)$.
 - (a) Prove that if G is abelian then it is isomorphic to the product group $H \times K$.
 - (b) Without the assumption that G is abelian, find a bijective map $\psi: G \to H \times N$ and show by an example that G need not be isomorphic to the product group.