Mathematics 433

Due: October 9, 2007

Name	

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.**

"You don't understand anything until you learn it more than one way." - Marvin Minsky

Problems

- 1. You **must** do this problem.
 - (a) If H is a subgroup of G, then by the **centralizer**, C(H), of H we mean the set $\{x \in G : xh = hx \text{ for all } h \in E\}$. Prove that C(H) is a subgroup of G.
 - (b) Must the centralizer of an element of a group be Abelian?
 - (c) Must the center of a group be Abelian?
- 2. Do one (1) of the following.
 - (a) Suppose that G is a group of order 16 and that, by direct computation, you know that G has at least nine elements x such that $x^8 = e$.
 - i. Can you conclude that G is not cyclic?
 - ii. What if G has at least five elements x such that $x^4 = e$?
 - iii. Generalize your results as a reasonable conjecture.
 - (b) If G is an Abelian group and contains cyclic subgroups of orders 4 and 5, what other sizes of cyclic subgroups **must** G contain?
- 3. Do all of the following.
 - (a) Let $b' = aba^{-1}$. Prove that $(b')^n = ab^na^{-1}$
 - (b) Prove if $aba^{-1} = b^2$, then $a^3ba^{-3} = b^8$.
 - (c) Prove that the map $\phi: GL(n,R) \to GL(n,R)$ defined by $\phi(A) = (A^t)^{-1}$ is an automorphism.
- 4. Do:
 - (a) Let H be a subgroup of G and let $g \in G$. The **conjugate subgroup** gHg^{-1} of G is defined to be the set of all conjugates ghg^{-1} where $h \in H$. Prove that $gHg^{-1}is$ a subgroup of G.
 - (b) Prove that a subgroup H of G is normal in G if and only if $gHg^{-1} = H$ for all $g \in G$.