Fall 2007

Due September 28

Name

1

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.** "Simple solutions seldom are. It takes a very unusual mind to undertake analysis of the obvious." — Alfred North Whitehead

Problems

When doing problems associated with matrices, you are not restricted to the material covered, so far, in our review.

- 1. You must do this problem. Do ${\bf two}$ of the following.
 - (a) (Vandermonde Determinant)

i. Prove that det
$$\begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (b-a)(c-a)(c-b).$$

ii. (*) Prove an analogous formula for $n \times n$ matrices by using induction and row operations (in a clever fashion) to clear out the first column.

 $\begin{bmatrix} 2 & -1 \end{bmatrix}$

(b) The Fibonacci sequence is defined by $f_1 = 1$, $f_2 = 1$, $f_{n+2} = f_n + f_{n+1}$ for all $n \ge 1$. Prove that for every positive integer n, $f_n < 2^n$.

	-1	2	-1				
(c) Use induction to compute the determinant of $A =$		-1	2	-1			
				·			·
				$^{-1}$	2	-1	
	L				-1	2	

- 2. Do one of the following.
 - (a) Prove that the Second Principle of Mathematical Induction implies the First Principle of Mathematical Induction.
 - (b) Prove that the First Principle of Mathematical Induction implies the Second Principle of Mathematical Induction.
 - (c) Let A, B be $m \times n$ and $n \times m$ matrices. Prove $I_m AB$ is invertible if and only if $I_n BA$ is invertible.
- 3. Let P(A) be the set of all subsets of set A(P(A)) is called the **power set** of A.)
 - (a) Prove that if A is a finite set with n elements then P(A) has precisely 2^n elements.
 - (b) Show that for any set (including infinite sets) A it is not the case that A is in one-one correspondence with P(A). [Hint: the infinite case is much more interesting than the finite case. Let $f: A \to P(A)$ be any one-to-one function and show it cannot be onto by considering the subset of A consisting of all elements a that are not in their image, f(a), under f.]