Name

"Education: That which discloses to the wise and disguises from the foolish their lack of understanding." -Ambrose Bierce, writer (1842-1914)

1. (Section $8.5 \# 21$) Does the following series converge or diverge? Give reasons for your answer.

$$
\sum_{n=1}^{\infty} \frac{n!}{(2 n+1)!}
$$

Answer: Using the ratio test we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!}{(2(n+1)+1)!}}{\frac{n!}{(2 n+1)!}} \\
&=\lim _{n \rightarrow \infty} \frac{(n+1)!}{(2 n+3)!} \cdot \frac{(2 n+1)!}{n!} \\
&=\lim _{n \rightarrow \infty} \frac{(n+1) n!}{(2 n+3)(2 n+2)(2 n+1)!} \cdot \frac{(2 n+1)!}{n!} \\
&=\lim _{n \rightarrow \infty} \frac{(n+1)}{(2 n+3)(2 n+2)} \cdot \frac{1}{n^{2}} \\
& \frac{1}{n^{2}} \\
&=\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n}+\frac{1}{n^{2}}\right)}{\left(2+\frac{3}{n}\right)\left(2+\frac{2}{n}\right)} \\
&=\frac{0}{4}=0
\end{aligned}
$$

Since this is the ratio test and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0<1$ the series $\sum_{n=1}^{\infty} \frac{n!}{(2 n+1)!}$ converges.
2. (Section 8.6 \#24) Does the following series converge absolutely, converge conditionally or diverge? Give reasons for your answer.

$$
\sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt[n]{10})
$$

Answer: Since $\lim _{n \rightarrow \infty}(\sqrt[n]{10})=\lim _{n \rightarrow \infty}(10)^{1 / n}=10^{0}=1$ then we see that for very large values of $n,(-1)^{n+1}(\sqrt[n]{10})$ oscillates between numbers that are very close to +1 and numbers that are very close to -1 . Hence, $(-1)^{n+1}(\sqrt[n]{10})$ is not limiting to any actual number and we must conclude that $\lim _{n \rightarrow \infty}(-1)^{n+1}(\sqrt[n]{10})$ does not exist. Note that we do not have a nice notation that indicates why the limit does not exist.
3. (Section 8.7 \#26) Find the radius and interval of convergence of the following series. For what values of x does the series converge absolutely? For what values of x does it converge conditionally?

$$
\sum_{n=0}^{\infty}(-2)^{n}(n+1)(x-1)^{n}
$$

Answer: We begin by running the Root Test on the absolute value series, $\sum_{n=0}^{\infty} 2^{n}(n+1)|x-1|^{n}$, associated with the given power series.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{2^{n}(n+1)|x-1|^{n}} & =\lim _{n \rightarrow \infty} \sqrt[n]{2^{n}} \cdot \sqrt[n]{n+1} \cdot \sqrt[n]{|x-1|^{n}} \\
& =2(1)|x-1|
\end{aligned}
$$

This tells us the original series will converge absolutely for any number x satisfying

$$
\begin{aligned}
2|x-1| & <1 \\
|x-1| & <\frac{1}{2} \\
-\frac{1}{2} & <x-1<\frac{1}{2} \\
\frac{1}{2} & <x<\frac{3}{2}
\end{aligned}
$$

In addition we know that the original series diverges for any number x that satisfies either $x>\frac{3}{2}$ or $x<\frac{1}{2}$.
We now check the two remaining points ($x=\frac{1}{2}, \frac{3}{2}$) individually
(a) Substituting $x=\frac{1}{2}$ into the original series and using the fact that $(-2)^{n}\left(-\frac{1}{2}\right)^{n}=\left[(-2)\left(-\frac{1}{2}\right)\right]^{n}=$ $1^{n}=1$, we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-2)^{n}(n+1)\left(\frac{1}{2}-1\right)^{n} & =\sum_{n=0}^{\infty}(-2)^{n}(n+1)\left(-\frac{1}{2}\right)^{n} \\
& =\sum_{n=0}^{\infty}(n+1)
\end{aligned}
$$

which diverges by the N^{\prime} 'th term test since $\lim _{n \rightarrow \infty}(n+1)=\infty$ and hence is not zero.
(b) Substituting $x=\frac{3}{2}$ into the original series and using $(-2)^{n}\left(\frac{1}{2}\right)^{n}=\left[(-2)\left(\frac{1}{2}\right)\right]^{n}=(-1)^{n}$ we have

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-2)^{n}(n+1)\left(\frac{3}{2}-1\right)^{n}= & \sum_{n=0}^{\infty}(-2)^{n}(n+1)\left(\frac{1}{2}\right)^{n} \\
& \sum_{n=0}^{\infty}(-1)^{n}(n+1)
\end{aligned}
$$

which also diverges by the N^{\prime} th term test because, similar to the answer in number 2 above, $(-1)^{n}(n+1)$ swings back and forth between very large positive numbers and very large negative numbers and so is not limiting to any number at all, let alone limiting to the number 0 .

