October 9, 2007
Name

Technology used: Directions:

- Be sure to include in-line citations every time you use technology.
- Include a careful sketch of any graph obtained by technology in solving a problem.
- Only write on one side of each page.

Do all of the following problems

1. Evaluate any three (3) of the following.
(a) $\int \frac{1}{x^{2}} e^{1 / x} \sec \left(2+e^{1 / x}\right) \tan \left(2+e^{1 / x}\right) d x$

Answer: $u=2+e^{1 / x}$ so $d u=-x^{-2} e^{1 / x} d x$ so
$\int \frac{1}{x^{2}} e^{1 / x} \sec \left(2+e^{1 / x}\right) \tan \left(2+e^{1 / x}\right) d x=-\int \sec (u) \tan (u) d u=-\sec (u)+C=-\sec \left(2+e^{1 / x}\right)+$ C
(b) $\int \frac{1}{x} \sin ^{2}(\ln (x)) d x$

Answer: $u=\ln (x)$ so $d u=\frac{1}{x} d x$ and
$\int \frac{1}{x} \sin ^{2}(\ln (x)) d x=\int \sin ^{2}(u) d u=\frac{1}{2} \int(1-\cos (2 u)) d u=\frac{1}{2}\left[u-\frac{1}{2} \sin (2 u)\right]+C$
$=\frac{1}{2} \ln (x)-\frac{1}{4} \sin (2 \ln (x))+C$
(c) $\int_{\ln (4)}^{\ln (9)} e^{x / 2} d x$

Answer: $u=x / 2$ so $\int_{\ln (4)}^{\ln (9)} e^{x / 2} d x=\left.2 e^{x / 2}\right|_{2 \ln (2)} ^{2 \ln (3)}=2\left[e^{\frac{1}{2} \cdot 2 \ln (3)}-e^{\frac{1}{2} \cdot 2 \ln (2)}\right]$
$=2\left[e^{\ln (3)}-e^{\ln (2)}\right]=2[3-2]=2$
(d) $\frac{d}{d x} \int_{e^{x^{2}}}^{2} \frac{1}{\sqrt{t}} d t$

Answer: $\frac{d}{d x} \int_{e^{x^{2}}}^{2} \frac{1}{\sqrt{t}} d t=-\frac{d}{d x} \int_{2}^{e^{x^{2}}} \frac{1}{\sqrt{t}} d t=$ by the first part of the FTC

$$
=-\frac{1}{\sqrt{e^{x^{2}}}} \cdot \frac{d}{d x}\left[e^{x^{2}}\right]=-e^{-\frac{1}{2} x^{2}} \cdot e^{x^{2}}(2 x)=-2 x e^{\frac{1}{2} x^{2}}
$$

2. The base of a solid is the region bounded by the graphs of $y=\sec (x), y=0, x=0$ and $x=\pi / 4$. The cross sections perpendicular to the x-axis are semicircles. Find the volume.
Answer: The diameter of the half circle at x is $\sec (x)$ so the radius is $\frac{\sec (x)}{2}$. Thus the volume satisfies
$V=\frac{1}{2} \pi \int_{0}^{\pi / 4} \frac{\sec ^{2}(x)}{4} d x=\frac{1}{8} \pi \int_{0}^{\pi / 4} \sec ^{2}(x) d x=\left.\frac{1}{8} \pi \tan (x)\right|_{0} ^{\pi / 4}=\frac{1}{8} \pi[1-0]=\frac{\pi}{8}$.
3. A solid of revolution is formed when the region bounded by the curves $x=y^{2}$ and $x=6-y$ is rotated about the line $y=4$. Use the method of cylindrical shells to find the volume.
Answer: The radius of the shell at level y is $(4-y)$ and the height of that shell is $\left(6-y-y^{2}\right)$ so the volume satisfies
$V=2 \pi \int_{-3}^{2}(4-y)\left(6-y-y^{2}\right) d y=2 \pi \int\left(24-10 y-3 y^{2}+y^{3}\right) d y$
$=2 \pi\left[\left(24 y-5 y^{2}-y^{3}+\frac{1}{4} y^{4}\right)\right]_{-3}^{2}=\frac{375}{2} \pi$ which is about 589.0486
4. Find the length of the parametrized curve $x=\frac{t^{3}}{6}+\frac{1}{2 t}, y=t$, from $t=2$ to $t=3$.

Answer: $\frac{d x}{d t}=\frac{1}{2} x^{2}-\frac{1}{2} x^{-2}$ and $\frac{d y}{d t}=1$ so $\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\sqrt{\left(\frac{1}{2} x^{2}-\frac{1}{2} x^{-2}\right)^{2}+1}$
$=\sqrt{\left(\frac{1}{2} x^{2}+\frac{1}{2} x^{-2}\right)}$ so the length of the curve satisfies
5. $S=\int_{2}^{3} \sqrt{\left(\frac{1}{2} t^{2}+\frac{1}{2} t^{-2}\right)^{2}} d t=\int_{2}^{3}\left|\frac{1}{2} t^{2}+\frac{1}{2} t^{-2}\right| d t=\int_{2}^{3}\left(\frac{1}{2} t^{2}+\frac{1}{2} t^{-2}\right) d t=\frac{13}{4}$
6. Solve the separable differentiable equation

$$
\sqrt{x} \frac{d y}{d x}=e^{y+\sqrt{x}}, x>0 .
$$

Answer (Section B): Separating variables and making the substitution $u=\sqrt{x}$ gives

$$
\begin{aligned}
\sqrt{x} \frac{d y}{d x} & =e^{y+\sqrt{x}} \\
\sqrt{x} \frac{d y}{d x} & =e^{y} e^{\sqrt{x}} \\
e^{-y} d y & =e^{\sqrt{x}} \frac{1}{\sqrt{x}} d x \\
\int e^{-y} d y & =\int e^{\sqrt{x}} \frac{1}{\sqrt{x}} d x \\
-e^{-y} & =2 e^{\sqrt{x}}+C
\end{aligned}
$$

Extra credit was awarded for noticing that this cannot be solved for y since the left hand side is negative but the right side is positive for large x.
Answer (Section C): Mimicing the previous solution but with $\sqrt{x} \frac{d y}{d x}=e^{-y+\sqrt{x}}$ instead of $\sqrt{x} \frac{d y}{d x}=$ $e^{y+\sqrt{x}}$

$$
\begin{aligned}
\sqrt{x} \frac{d y}{d x} & =e^{-{ }^{y+\sqrt{x}}} \\
\sqrt{x} \frac{d y}{d x} & =e^{-y} e^{\sqrt{x}} \\
e^{y} d y & =e^{\sqrt{x}} \frac{1}{\sqrt{x}} d x \\
\int e^{y} d y & =\int e^{\sqrt{x}} \frac{1}{\sqrt{x}} d x \\
e^{y} & =2 e^{\sqrt{x}}+C \\
y & =\ln \left(2 e^{\sqrt{x}}+C\right)
\end{aligned}
$$

7. Do one of the following.
(a) A wire in the shape of a semicircle of radius 7 has a density function $\delta(\theta)=2 \sin (\theta) \frac{\mathrm{g}}{\mathrm{cm}}$ that varies with the parameter angle θ. Use our three step process to set up a definite integral whose numerical value is the total mass (measured in grams) of the wire. Do not evaluate the integral. Use the parametric equations $x=7 \cos (\theta), y=7 \sin (\theta), 0 \leq \theta \leq \pi$ where length is measured in centimeters.
Answer: A typical piece of the wire has length Δs_{k} and density $\delta(\theta)=2 \sin (\theta)$ so its mass is about $\Delta m_{k}=2 \sin (\theta) \Delta s_{k}$. This gives the total mass as the integral $\int_{0}^{\pi} 2 \sin (\theta) d s$ provided the integrand is integrable.

Since $d s=\sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=\sqrt{[-7 \sin (\theta)]^{2}+[7 \cos (\theta)]^{2}} d \theta=\sqrt{49} d \theta=7 d \theta$ then we have the total mass given by
$M=\int_{0}^{\pi} 2 \sin (\theta) \cdot 7 \cdot d \theta=14 \int_{0}^{2 \pi} \sin (\theta) d \theta=-\left.14 \cos (\theta)\right|_{0} ^{\pi}=28$.
(b) Empirical evidence indicates that the power dissipation in a hurricane is proportional to three things: the cube of the wind speed, the frictional drag from the surface area at the base of the hurricane and the surface air density. Assume that the wind velocity $V(r)$ depends only on the distance, r, from the center of the Hurricane and denote the outer radius of the hurricane by R, the surface drag coefficient by C_{d}, and the surface air density by ρ.Use this information and our three-step process to build a definite integral that represents the total power dissipation.
Answer: The power dissipation is proportional to $C_{d} \cdot 2 \pi r \cdot \Delta r$ since the drag is essentially constant along the washer of radius r. Thus, the Riemann Sum approximating the power dissipation is $\sum_{k=1}^{n} K \cdot|V(r)|^{3} \cdot \rho \cdot C_{d} 2 \pi r \Delta r$ which leads to the integral $\int_{0}^{R} K|V(r)|^{3} \cdot \rho \cdot C_{d} 2 \pi r d r$.

