Answer Key

Exam 1
September 18, 2007
Name

Technology used:
Directions:

- Be sure to include in-line citations every time you use technology.
- Include a careful sketch of any graph obtained by technology in solving a problem.
- Only write on one side of each page.

Do any six (6) of the following problems

1. [8,7 points] Do any two (2) of the following three options.
(a) What are the antiderivatives of the following functions?
i. $\sin (k x)$ has antiderivative $\int \sin (k x) d x=-\frac{1}{k} \cos (k x)+C$
ii. $\sec ^{2}(k x)$ has antiderivative $\int \sec ^{2}(k x) d x=\frac{1}{k} \tan (k x)+C$
iii. $\frac{1}{\sqrt{1-x^{2}}}$ has antiderivative $\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin (x)+C$
iv. $\frac{1}{1+x^{2}}$ has antiderivative $\int \frac{1}{1+x^{2}} d x=\arctan (x)+C$
v. $e^{k x}$ has antiderivative $\int e^{k x} d x=\frac{e^{k x}}{k}+C$
(b) The accompanying table gives data for the velocity of a vintage sports car accelerating from 0 to 142 miles per hour in 36 seconds (10 thousandths of an hour). Use rectangles to estimate how far the car traveled during the 36 seconds it took to reach $142 \mathrm{mi} / \mathrm{h}$. If you use your calculator on this problem be sure to also write out the formula for the estimate.

Time (h)	Velocity $(\mathrm{mi} / \mathrm{h})$	Time (h)	Velocity $(\mathrm{mi} / \mathrm{h})$
0.0	0	0.006	116
0.001	40	0.007	125
0.002	62	0.008	132
0.003	82	0.009	137
0.004	96	0.001	142
0.005	108		

Using Right Endpoints: $(0.001)(40+62+82+96+108+116+125+132+137+142)=1$. 04
Using Left Endpoints: $(0.001)(0+40+62+82+96+108+116+125+132+137)=0.898$
(c) Are any of the following equal? If so, which. You do not need to actually add up any of them.

No two are equal.
i. $\sum_{k=3}^{100}(k-1)^{2}=2^{2}+3^{3}+\cdots+99^{2}$
ii. $\sum_{k=17}^{118}(k-19)^{2}=(-2)^{2}+(-1)^{2}+0^{2}+1^{2}+\cdots+99^{2}$
iii. $\sum_{k=-96}^{1}(k-1)^{2}=(-97)^{2}+(-96)^{2}+\cdots+(-1)^{2}+0^{2}$
iv. $\sum_{k=-1}^{97}(k+3)^{2}=2^{2}+3^{2}+4^{2}+\cdots+99^{2}+100^{2}$
2. [15 points] Use the Riemann Sum process to:
(a) Find a formula for the upper sum for the function $f(x)=1+x^{3}$ over the interval [0,2] obtained by partitioning [0, 2] into n equal subintervals. [Useful fact: $\left.\sum_{k=1}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2}\right]$
Partitioning [0,2] into n equal subintevals give $\Delta x=\frac{2-0}{n}=\frac{2}{n}$
Selecting the Right endpoint of each subinterval gives $c_{1}=\frac{2}{n}, c_{2}=2 \cdot \frac{2}{n}, \cdots, c_{k}=k \cdot \frac{2}{n}, \cdots, c_{n}=$ $n \cdot \frac{2}{n}$
So $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x=\sum_{k=1}^{n} f\left(k \cdot \frac{2}{n}\right) \frac{2}{n}=\frac{2}{n} \sum_{k=1}^{n}\left[1+\left(k \cdot \frac{2}{n}\right)^{3}\right]=\frac{2}{n} \sum_{k=1}^{n}\left[1+\frac{8 k^{3}}{n^{3}}\right]$
$=\frac{2}{n}\left[\sum_{k=1}^{n} 1+\frac{8}{n^{3}} \sum_{k=1}^{n} k^{3}\right]=\frac{2}{n} \sum_{k=1}^{n} 1+\frac{16}{n^{4}} \sum_{k=1}^{n} k^{3}=\frac{2}{n}(n)+\frac{16}{n^{4}}\left(\frac{1}{4} n^{2}(n+1)^{2}\right)$
$=2+4\left(\frac{n+1}{n}\right)\left(\frac{n+1}{n}\right)=2+4\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)$
Take the limit of these sums as $n \rightarrow \infty$ to calculate the area under the curve over $[0,2]$.
$\lim _{n \rightarrow \infty} 2+4\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)=2+4(1)(1)=6$.
3. [15 points] Use the fact that $f(x)=1+x^{3}$ is monotone increasing over the interval $[0,2]$ to find an error bound for the estimate in part a. of the previous problem. Include any pertinent figures and write your answer as a function of n (the number of subintervals).
Since the function is monotone increasing we can draw a figure where the errors accumulating in each subinterval of a Riemann sum are all completely contained in a rectangle of height $f(2)-f(0)$ and width $\Delta x=\frac{2}{n}$. Thus the total error must be less than the area of that rectangle: Error $\leq(f(2)-f(0)) \frac{2}{n}=(9-1) \frac{2}{n}=\frac{16}{n}$.
4. [15 points] Example 1 of Section 5.3 in the textbook explains why the function below is not integrable on the interval $[0,1]$.
(a) Explain why it is true that for any partition P of the interval $[0,1]$ it is possible to select points c_{k} in two different ways: one where the Riemann sum adds up to 1 and another where the Riemann sum adds up to 0 .
Every interval, no matter how small, contains both rational and irrational numbers. Hence given any partition P of the interval $[0,1]$ we can select a rational point c_{k} in the k th subinterval and we can also select an irrational point d_{k} in that subinterval. Then, since $f\left(c_{k}\right)=1$ and $f\left(d_{k}\right)=0$ we can see that the Riemann sums satisfy:

$$
\begin{aligned}
\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} & =\sum_{k=1}^{n}(1) \Delta x_{k}=\sum_{k=1}^{n} \Delta x_{k}=b-a=1 \\
\sum_{k=1}^{n} f\left(d_{k}\right) \Delta x_{k} & =\sum_{k=1}^{n}(0) \Delta x_{k}=0
\end{aligned}
$$

(b) Explain why this is enough to show that the function is not integrable.

$$
f(x)= \begin{cases}1, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational }\end{cases}
$$

Since the result of computing a Riemann sum depends on how you select points in each subinterval, the definition on page 333 is not satisfied and so this function f cannot be integrated.
5. [15 points] Do both of the following.
(a) Express as a definite integral where P is a partition of $[-3,-1]$.

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(\tan ^{2}\left(7 c_{k}\right) e^{-c_{k}}\right) \Delta x_{k}
$$

This limit, if it exists, represents the definite integral $\int_{-3}^{-1} \tan ^{2}(7 x) e^{-x} d x$
(b) Does this limit exist? Why? If you think it exists, do not bother to compute it.

The function $f(x)=\tan ^{2}(7 x) e^{-x}$ does not have the entire interval $[-3,-1]$ in its domain (there are vertical asymptotes at various points ($x=-\frac{\pi}{2}$ is one). Thus the limit does not exist.
6. [15 points] The Domination property of Table 5.3 in Section 5.3 of the text applies to integrable functions and reads

$$
f(x) \geq g(x) \text { on }[a, b] \text { implies } \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

(a) Use the full Riemann Sum process to explain why this is true.

Let P be any partition of the interval $[a, b]$ and make any selection of points c_{k} in the k th interval.
Then $f\left(c_{k}\right) \geq g\left(c_{k}\right)$ and since Δx_{k} is positive we have $f\left(c_{k}\right) \Delta x_{k} \geq g\left(c_{k}\right) \Delta x_{k}$
Thus $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} \geq \sum_{k=1}^{n} g\left(c_{k}\right) \Delta x_{k}$
Since this is true for every partition and every selection of points, then the following limits satisfy the same inequality
$\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} \geq \lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$
That is, $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
7. [Math 181B] [15 points] Compute the following function values by using a well-known area formula.
(a) $F(2)$ where $F(x)=\int_{0}^{x} \sqrt{4-x^{2}} d x$
$y=\sqrt{4-x^{2}}$ is the graph of the top half of the circle of radius 2 centered at the origin.
$F(2)$ represents the area bounded above by this half circle, below by the x-axis and between 0 and 2.
This is $1 / 4$ of the circle so $F(2)=\frac{1}{4} \pi(2)^{2}=\pi$
(b) $F(-2)$ where $F(x)=\int_{0}^{x} \sqrt{4-x^{2}} d x$
$F(-2)=\int_{0}^{-2} \sqrt{4-x^{2}} d x=-\int_{-2}^{0} \sqrt{4-x^{2}} d x$
The integral (without the minus sign) represents the area bounded by the circle and the x-axis between -2 and 0 which is also π
Thus $F(-2)=-\pi$
(c) Find $\frac{d y}{d x}$ for the function

$$
y=\int_{\tan (x)}^{0} \frac{d t}{1+t^{2}}
$$

$y=\int_{\tan (x)}^{0} \frac{d t}{1+t^{2}}=-\int_{0}^{\tan (x)} \frac{1}{1+t^{2}} d t$ so the derivative $\frac{d y}{d x}=\frac{-1}{1+\tan ^{2}(x)} \cdot \frac{d}{d x}[\tan (x)]=\frac{-1}{1+\tan ^{2}(x)}$. $\sec ^{2}(x)=\frac{-1}{\sec ^{2}(x)} \cdot \sec ^{2}(x)=-1$
7. [Math 181C] [15 points] The following denotes the area of a region in the plane. Carefully describe that region.

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left[9\left(2+\frac{5 k}{n}\right)^{5}-\left(2+\frac{5 k}{n}\right)^{2}+15\right] \frac{5}{n}
$$

This limit represents a definite integral. The $\frac{5}{n}$ tells us that $\Delta x=\frac{5}{n}$ so we know the length of the original interval is 5 .
Thus the definite integral equal to the given limit can be written either as $\int_{2}^{7}\left(9 x^{5}-x^{2}+15\right) d x$ or $\int_{0}^{5}\left(9(2+x)^{5}-(2+x)^{2}+15\right) d x$.
This tells us that the region being described is the region between the graph of $y=9 x^{5}-x^{2}+15$ and the x-axis between $x=2$ and $x=7$
Or, if you prefer, it is also the region between the graph of $y=9(2+x)^{5}-(2+x)^{2}+15$ and the x-axis between $x=0$ and $x=5$.

